Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9006, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637581

RESUMEN

Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera, Pocillopora and Acropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, but Acropora bleached more severely than Pocillopora overall. Acropora bleached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching in Pocillopora corals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10-29 cm) or small colonies (5-9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Agua , Temperatura
2.
Nat Commun ; 9(1): 2244, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872073

RESUMEN

The original version of the Article was missing an acknowledgement of a funding source. The authors acknowledge that A. Safaie and K.Davis were supported by National Science Foundation Award No. 1436254 and G. Pawlak was supported by Award No. 1436522. This omission has now been corrected in the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 1671, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700296

RESUMEN

Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures.


Asunto(s)
Antozoos/fisiología , Chlorophyta/fisiología , Animales , Arrecifes de Coral , Ecosistema , Calor , Estaciones del Año , Agua de Mar/química , Simbiosis
4.
Gigascience ; 5: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26998258

RESUMEN

Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecología/métodos , Ecosistema , Modelos Teóricos , Clima , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Predicción , Actividades Humanas , Humanos , Islas , Polinesia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...