Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373514

RESUMEN

Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 µM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Semillas , Clorofila/metabolismo
2.
Plants (Basel) ; 9(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531914

RESUMEN

Salinity is a major constraint limiting plant growth and productivity worldwide. Thus, understanding the mechanism underlying plant stress response is of importance to developing new approaches that will increase salt tolerance in crops. This study reports the effects of salt stress on Sorghum bicolor during germination and the role of calcium (Ca2+) to ameliorate some of the effects of salt. To this end, sorghum seeds were germinated in the presence and absence of different NaCl (200 and 300 mM) and Ca2+ (5, 15, or 35 mM) concentrations. Salt stress delayed germination, reduced growth, increased proline, and hydrogen peroxide (H2O2) contents. Salt also induced the expression of key antioxidant (ascorbate peroxidase and catalase) and the Salt Overlay Sensitive1 genes, whereas in the presence of Ca2+ their expression was reduced except for the vacuolar Na+/H+ exchanger antiporter2 gene, which increased by 65-fold compared to the control. Ca2+ reversed the salt-induced delayed germination and promoted seedling growth, which was concomitant with reduced H2O2 and Na+/K+ ratio, indicating a protective effect. Ca2+ also effectively protected the sorghum epidermis and xylem layers from severe damage caused by salt stress. Taken together, our findings suggest that sorghum on its own responds to high salt stress through modulation of osmoprotectants and regulation of stress-responsive genes. Finally, 5 mM exogenously applied Ca2+ was most effective in enhancing salt stress tolerance by counteracting oxidative stress and improving Na+/K+ ratio, which in turn improved germination efficiency and root growth in seedlings stressed by high NaCl.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...