Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 14(50): e1803274, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30353702

RESUMEN

Light responsive materials that are able to change their shape are becoming increasingly important. However, preconfigurable bistable or even multi-stable visible light responsive coatings have not been reported yet. Such materials will require less energy to actuate and will have a longer lifetime. Here, it is shown that fluorinated azobenzenes can be used to create rewritable and pre-configurable responsive surfaces that show multi-stable topographies. These surface structures can be formed and removed by using low intensity green and blue light, respectively. Multistable preconfigured surface topographies can also be created in the absence of a mask. The method allows for full control over the surface structures as the topographical changes are directly linked to the molecular isomerization processes. Preliminary studies reveal that these light responsive materials are suitable as adaptive biological surfaces.

2.
Langmuir ; 34(36): 10543-10549, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30089356

RESUMEN

Wrinkling is a powerful technique for the preparation of surface structures over large areas, but it is difficult to simultaneously control the direction, period, and amplitude of the wrinkles without resorting to complicated procedures. In this work, we demonstrate a wrinkling system consisting of a liquid crystal polymer network and a thin layer of gold, in which the direction of the wrinkles is controlled by the alignment of the liquid crystal molecules and the average amplitude and period are controlled by a high-intensity UV irradiation. The UV exposure represses the amplitude and period dictated by the total exposure. Using photoalignment and photomasks, we demonstrate an unprecedented control over the wrinkling parameters and were able to generate some striking optical patterns. The mechanism of the wrinkle suppression was investigated and appears to involve localized photodegradation at the polymer-gold interface, possibly due to the formation of mechanoradicals.

3.
Soft Matter ; 14(24): 4898-4912, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29892763

RESUMEN

In analogy with developments in soft robotics it is anticipated that soft robotic functions at surfaces of objects may have a large impact on human life with respect to comfort, health, medical care and energy. In this review, we demonstrate the possibilities and versatilities of liquid crystal networks and elastomers being explored for soft robotics, with an emphasis on motile surface properties, such as topographical dynamics. Typically the surfaces reversibly transfer from a flat state to a pre-designed corrugated state under various stimuli. But also reversible conversion between different corrugated states is feasible. Generally, the driving triggers are heat, light, electricity or contact with pH changing media. Also, the macroscopic effects of those dynamic topographies, such as altering the friction, wettability and/or performing work are illustrated. The review concludes with the existing challenges as well as outlook opportunities.

4.
Nat Commun ; 9(1): 1130, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540690

RESUMEN

The original version of this Article contained errors in Figs. 1a, 2a, 3a, and 4b, in which the units on the scale bars incorrectly read 'µm' rather than the correct 'nm.' This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 456, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386512

RESUMEN

Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated muscle-like contraction. Here we demonstrate a dynamic thermal control of the surface topography of an elastomer prepared as a coating with a pattern of in-plane molecular orientation. The inscribed pattern determines whether the coating develops elevations, depressions, or in-plane deformations when the temperature changes. The deterministic dependence of the out-of-plane dynamic profile on the in-plane orientation is explained by activation forces. These forces are caused by stretching-contraction of the polymer networks and by spatially varying molecular orientation. The activation force concept brings the responsive liquid crystal elastomers into the domain of active matter. The demonstrated relationship can be used to design coatings with functionalities that mimic biological tissues such as skin.

6.
Adv Mater ; 29(27)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28474746

RESUMEN

Extracellular microenvironment is highly dynamic where spatiotemporal regulation of cell-instructive cues such as matrix topography tightly regulates cellular behavior. Recapitulating dynamic changes in stimuli-responsive materials has become an important strategy in regenerative medicine to generate biomaterials which closely mimic the natural microenvironment. Here, light responsive liquid crystal polymer networks are used for their adaptive and programmable nature to form hybrid surfaces presenting micrometer scale topographical cues and changes in nanoscale roughness at the same time to direct cell migration. This study shows that the cell speed and migration patterns are strongly dependent on the height of the (light-responsive) micrometer scale topographies and differences in surface nanoroughness. Furthermore, switching cell migration patterns upon in situ temporal changes in surface nanoroughness, points out the ability to dynamically control cell behavior on these surfaces. Finally, the possibility is shown to form photoswitchable topographies, appealing for future studies where topographies can be rendered reversible on demand.

7.
Adv Mater ; 29(17)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28234429

RESUMEN

Photoactivated reversible addition fragmentation chain transfer (RAFT)-based dynamic covalent chemistry is incorporated into liquid crystalline networks (LCNs) to facilitate spatiotemporal control of alignment, domain structure, and birefringence. The RAFT-based bond exchange process, which leads to stress relaxation, is used in a variety of conditions, to enable the LCN to achieve a near-equilibrium structure and orientation upon irradiation. Once formed, and in the absence of subsequent triggering of the RAFT process, the (dis)order in the LCN and its associated birefringence are evidenced at all temperatures. Using this approach, the birefringence, including the formation of spatially patterned birefringent elements and surface-active topographical features, is selectively tuned by adjusting the light dose, temperature, and cross-linking density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...