Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(39): 21672-21678, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37732812

RESUMEN

It is challenging and important to achieve high performance for an electrochemical CO2 reduction reaction (eCO2RR) to yield CH4 under neutral conditions. So far, most of the reported active sites for eCO2RR to yield CH4 are single metal sites; the performances are far below the commercial requirements. Herein, we reported a nanosheet metal-organic layer in single-layer, namely, [Cu2(obpy)2] (Cuobpy-SL, Hobpy = 1H-[2,2']bipyridinyl-6-one), possessing dicopper(I) sites for eCO2RR to yield CH4 in a neutral aqueous solution. Detailed examination of Cuobpy-SL revealed high performance for CH4 production with a faradic efficiency of 82(1)% and a current density of ∼90 mA cm-2 at -1.4 V vs. reversible hydrogen electrode (RHE). No obvious degradation was observed over 100 h of continuous operation, representing a remarkable performance to date. Mechanism studies showed that compared with the conventional single-copper sites and completely exposed dicopper(I) sites, the dicopper(I) sites in the confined space formed by the molecular stacking have a strong affinity to key C1 intermediates such as *CO, *CHO, and *CH2O to facilitate the CH4 production, yet inhibiting C-C coupling.

2.
Research (Wash D C) ; 2022: 0008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39290966

RESUMEN

Inorganic solids are a kind of important catalysts, and their activities usually come from sparse active sites, which are structurally different from inactive bulk. Therefore, the rational optimization of activity depends on studying these active sites. Copper is a widely used catalyst and is expected to be a promising catalyst for the electroreduction of CO2 to C2H4. Here, we report a conductive dinuclear cuprous complex with a short Cu···Cu contact for the electroreduction of CO2 to C2H4. By using 1H-[1,10]phenanthrolin-2-one and Cu(I) ions, a dinuclear cuprous complex [Cu2(ophen)2] (Cuophen) with a remarkable conductivity (3.9 × 10-4 S m-1) and a short intramolecular Cu···Cu contact (2.62 Å) was obtained. Such a short Cu···Cu contact is close to the distance of 2.54 Å between 2 adjacent Cu atoms in the edge of the copper(100)/(111) plane. Detailed examination of Cuophen revealed a high activity for the electroreduction of CO2 to C2H4 with a Faradaic efficiency of 55(1)% and a current density of 580 mA cm-2, and no obvious degradation was observed over 50 h of continuous operation. Comparing the properties and mechanisms of Cuophen and 2 other copper complexes with different Cu···Cu distances, we found that the shorter Cu···Cu distance is conducive not only for a *CO species to bridge 2 copper ions into a more stable intermediate transition state but also for C-C coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA