Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(14): 6204-6214, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557085

RESUMEN

Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.


Asunto(s)
Materia Orgánica Disuelta , Hierro , Hierro/química , Agua de Mar/química , Agua , Compuestos Orgánicos
2.
Microorganisms ; 11(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375074

RESUMEN

The area around the Antarctic Peninsula (AP) is facing rapid climatic and environmental changes, with so far unknown impacts on the benthic microbial communities of the continental shelves. In this study, we investigated the impact of contrasting sea ice cover on microbial community compositions in surface sediments from five stations along the eastern shelf of the AP using 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods are characterized by a prevailing ferruginous zone, whereas a comparatively broad upper oxic zone is present at the heavily ice-covered station. Low ice cover stations were highly dominated by microbial communities of Desulfobacterota (mostly Sva1033, Desulfobacteria, and Desulfobulbia), Myxococcota, and Sva0485, whereas Gammaproteobacteria, Alphaproteobacteria, Bacteroidota, and NB1-j prevail at the heavy ice cover station. In the ferruginous zone, Sva1033 was the dominant member of Desulfuromonadales for all stations and, along with eleven other taxa, showed significant positive correlations with dissolved Fe concentrations, suggesting a significant role in iron reduction or an ecological relationship with iron reducers. Our results indicate that sea ice cover and its effect on organic carbon fluxes are the major drivers for changes in benthic microbial communities, favoring potential iron reducers at stations with increased organic matter fluxes.

3.
Sci Rep ; 13(1): 10281, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355766

RESUMEN

Dissimilatory iron reduction (DIR) is suggested to be one of the earliest forms of microbial respiration. It plays an important role in the biogeochemical cycling of iron in modern and ancient sediments. Since microbial iron cycling is typically accompanied by iron isotope fractionation, stable iron isotopes are used as tracer for biological activity. Here we present iron isotope data for dissolved and sequentially extracted sedimentary iron pools from deep and hot subseafloor sediments retrieved in the Nankai Trough off Japan. Dissolved iron (Fe(II)aq) is isotopically light throughout the ferruginous sediment interval but some samples have exceptionally light isotope values. Such light values have never been reported in natural marine environments and cannot be solely attributed to DIR. We show that the light isotope values are best explained by a Rayleigh distillation model where Fe(II)aq is continuously removed from the pore water by adsorption onto iron (oxyhydr)oxide surfaces. While the microbially mediated Fe(II)aq release has ceased due to an increase in temperature beyond the threshold of mesophilic microorganisms, the abiotic adsorptive Fe(II)aq removal continued, leading to uniquely light isotope values. These findings have important implications for the interpretation of dissolved iron isotope data especially in deep subseafloor sediments.


Asunto(s)
Destilación , Sedimentos Geológicos , Sedimentos Geológicos/química , Hierro/química , Isótopos de Hierro , Isótopos , Compuestos Ferrosos/química
4.
Sci Total Environ ; 865: 161168, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36572309

RESUMEN

Permeable sandy sediments cover 50-60 % of the global continental shelf and are important bioreactors that regulate organic matter (OM) turnover and nutrient cycling in the coastal ocean. In sands, the dynamic porewater advection can cause rapid mass transfer and variable redox conditions, thus affecting OM remineralization pathways, as well as the recycling of iron and phosphorus. In this study, North Sea sands were incubated in flow-through reactors (FTRs) to investigate biogeochemical processes under porewater advection and changing redox conditions. We found that the average rate of anaerobic OM remineralization was 12 times lower than the aerobic pathway, and Fe(III) oxyhydroxides were found to be the major electron acceptors during 34 days of anoxic incubation. Reduced Fe accumulated in the solid phase (expressed as Fe(II)) before significant release of Fe2+ into the porewater, and most of the reduced Fe (~96 %) remained in the solid phase throughout the anoxic incubation. Fe(II) retained in the solid phase, either through the formation of authigenic Fe(II)-bearing minerals or adsorption, was easily re-oxidized upon exposure to O2. Excessive P release (apart from OM remineralization) started at the beginning of the anoxic incubation and accelerated after the release of Fe2+ with a constant P/Fe2+ ratio of 0.26. After 34 days of anoxic incubation, porewater was re­oxygenated and > 99 % of released P was coprecipitated through Fe2+ oxidation (so-called "Fe curtain"). Our results demonstrate that Fe(III)/Fe(II) in the solid phase can serve as a relatively immobile and rechargeable "redox battery" under dynamic porewater advection. This Fe "redox battery" is characteristic for permeable sediments and environments with variable redox conditions, making Fe an important player in OM turnover. We also suggest that P liberated before Fe2+ release can escape the "Fe curtain" in surface sediments, thus potentially increasing net benthic P efflux from permeable sediments under variable redox conditions.

5.
Environ Int ; 156: 106602, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34051435

RESUMEN

Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.


Asunto(s)
Algas Marinas , Regiones Antárticas , Electrones , Sedimentos Geológicos , Hierro , ARN Ribosómico 16S/genética
6.
ISME J ; 15(4): 965-980, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33154547

RESUMEN

Elevated dissolved iron concentrations in the methanic zone are typical geochemical signatures of rapidly accumulating marine sediments. These sediments are often characterized by co-burial of iron oxides with recalcitrant aromatic organic matter of terrigenous origin. Thus far, iron oxides are predicted to either impede organic matter degradation, aiding its preservation, or identified to enhance organic carbon oxidation via direct electron transfer. Here, we investigated the effect of various iron oxide phases with differing crystallinity (magnetite, hematite, and lepidocrocite) during microbial degradation of the aromatic model compound benzoate in methanic sediments. In slurry incubations with magnetite or hematite, concurrent iron reduction, and methanogenesis were stimulated during accelerated benzoate degradation with methanogenesis as the dominant electron sink. In contrast, with lepidocrocite, benzoate degradation, and methanogenesis were inhibited. These observations were reproducible in sediment-free enrichments, even after five successive transfers. Genes involved in the complete degradation of benzoate were identified in multiple metagenome assembled genomes. Four previously unknown benzoate degraders of the genera Thermincola (Peptococcaceae, Firmicutes), Dethiobacter (Syntrophomonadaceae, Firmicutes), Deltaproteobacteria bacteria SG8_13 (Desulfosarcinaceae, Deltaproteobacteria), and Melioribacter (Melioribacteraceae, Chlorobi) were identified from the marine sediment-derived enrichments. Scanning electron microscopy (SEM) and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) images showed the ability of microorganisms to colonize and concurrently reduce magnetite likely stimulated by the observed methanogenic benzoate degradation. These findings explain the possible contribution of organoclastic reduction of iron oxides to the elevated dissolved Fe2+ pool typically observed in methanic zones of rapidly accumulating coastal and continental margin sediments.


Asunto(s)
Sedimentos Geológicos , Hierro , Benzoatos , Compuestos Férricos , Hibridación Fluorescente in Situ , Oxidación-Reducción , Óxidos
7.
Science ; 370(6521): 1230-1234, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33273103

RESUMEN

Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hot sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop two orders of magnitude and endospores become more than 6000 times more abundant than vegetative cells. Methane is biologically produced and oxidized until sediments reach 80° to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrations demonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zones alternate with zones up to 192 meters thick where microbes were undetectable.


Asunto(s)
Bacterias Formadoras de Endosporas/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Calor , Acetatos/metabolismo , Bacterias Formadoras de Endosporas/metabolismo , Sedimentos Geológicos/química , Metano/metabolismo
8.
Front Microbiol ; 10: 3041, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010098

RESUMEN

The flux of methane, a potent greenhouse gas, from the seabed is largely controlled by anaerobic oxidation of methane (AOM) coupled to sulfate reduction (S-AOM) in the sulfate methane transition (SMT). S-AOM is estimated to oxidize 90% of the methane produced in marine sediments and is mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria. An additional methane sink, i.e., iron oxide coupled AOM (Fe-AOM), has been suggested to be active in the methanic zone of marine sediments. Geochemical signatures below the SMT such as high dissolved iron, low to undetectable sulfate and high methane concentrations, together with the presence of iron oxides are taken as prerequisites for this process. So far, Fe-AOM has neither been proven in marine sediments nor have the governing key microorganisms been identified. Here, using a multidisciplinary approach, we show that Fe-AOM occurs in iron oxide-rich methanic sediments of the Helgoland Mud Area (North Sea). When sulfate reduction was inhibited, different iron oxides facilitated AOM in long-term sediment slurry incubations but manganese oxide did not. Especially magnetite triggered substantial Fe-AOM activity and caused an enrichment of ANME-2a archaea. Methane oxidation rates of 0.095 ± 0.03 nmol cm-3 d-1 attributable to Fe-AOM were obtained in short-term radiotracer experiments. The decoupling of AOM from sulfate reduction in the methanic zone further corroborated that AOM was iron oxide-driven below the SMT. Thus, our findings prove that Fe-AOM occurs in methanic marine sediments containing mineral-bound ferric iron and is a previously overlooked but likely important component in the global methane budget. This process has the potential to sustain microbial life in the deep biosphere.

9.
Chemosphere ; 134: 294-300, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25966460

RESUMEN

Iron stable isotope signatures (δ(56)Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013 b). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean δ(56)Fe values of -1.19 ± 0.34‰ and -1.04 ± 0.39 ‰, respectively, which is between 0.5‰ and 0.85‰ lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (-0.3‰ to -0.6‰). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, δ(56)Fe hemolymph values from both stations showed a high variability, ranging between -0.21‰ (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and -1.91‰ (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a "mixed" δ(56)Fe signature caused by Fe assimilation from different sources with varying Fe contents and δ(56)Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves.


Asunto(s)
Bivalvos/metabolismo , Isótopos de Hierro , Hierro/metabolismo , Animales , Regiones Antárticas , Fraccionamiento Químico , Compuestos Férricos , Isótopos/análisis , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...