Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(7): 2959-2981, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36534001

RESUMEN

Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].

2.
Inorg Chem ; 48(12): 5096-105, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19422195

RESUMEN

A series of tantalum imido and amido complexes supported by a pyridine-linked bis(phenolate) ligand has been synthesized. Characterization of these complexes via X-ray crystallography reveals both C(s) and C(2) binding modes of the bis(phenolate)pyridine ligand, with complexes containing two or fewer strong pi-donor interactions from ancillary ligands giving C(s) symmetry, whereas three strong pi-donor interactions (e.g., three amido ligands or one amido ligand and one imido ligand) give C(2)-symmetric binding of the bis(phenolate)pyridine ligand. DFT calculations and molecular orbital analyses of the complexes have revealed that the preference for C(s)-symmetric ligand binding is a result of tantalum-phenolate pi-bonding, whereas in cases where tantalum-phenolate pi-bonding is overridden by stronger Ta-N pi-bonding, C(2)-symmetric ligand binding is preferred, likely because conformationally this is the lowest-energy arrangement. This electronically driven change in geometry indicates that, unlike analogous metallocene systems, the bis(phenolate)pyridine pincer ligand is not a strong enough pi-donor to exert dominant control over the electronic and geometric properties of the complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...