Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 997: 135-147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815527

RESUMEN

Inter-organelle membrane contact sites (MCSs) serve as unique microenvironments for the sensing and exchange of cellular metabolites and lipids. Though poorly defined, ER-endolysosomal contact sites are quickly becoming recognized as centers for inter-organelle lipid exchange and metabolic decision-making. Here, we review the discovery and current state of knowledge of ER-endolysosomal MCSs with particular focus on the molecular players that establish and/or utilize these contact sites in metabolism. We also discuss associations of ER-endolysosomal MCS-associated proteins in human disease, as well as the therapeutic promise these contact sites hold in modulating cellular physiology.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Envejecimiento/patología , Animales , Transporte Biológico , Retículo Endoplásmico/patología , Endosomas/patología , Homeostasis , Humanos , Membranas Intracelulares/patología , Lisosomas/patología , Microdominios de Membrana/patología
2.
Dev Cell ; 27(2): 201-214, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24139821

RESUMEN

The endosomal sorting complexes required for transport (ESCRTs) have emerged as key cellular machinery that drive topologically unique membrane deformation and scission. Understanding how the ESCRT-III polymer interacts with membrane, promoting and/or stabilizing membrane deformation, is an important step in elucidating this sculpting mechanism. Using a combination of genetic and biochemical approaches, both in vivo and in vitro, we identify two essential modules required for ESCRT-III-membrane association: an electrostatic cluster and an N-terminal insertion motif. Mutating either module in yeast causes cargo sorting defects in the MVB pathway. We show that the essential N-terminal insertion motif provides a stable anchor for the ESCRT-III polymer. By replacing this N-terminal motif with well-characterized membrane insertion modules, we demonstrate that the N terminus of Snf7 has been tuned to maintain the topological constraints associated with ESCRT-III-filament-mediated membrane invagination and vesicle formation. Our results provide insights into the spatially unique, ESCRT-III-mediated membrane remodeling.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/genética , Endosomas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Electricidad Estática , Proteínas de Transporte Vesicular/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-24003212

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) drive multivesicular body (MVB) biogenesis and cytokinetic abscission. Originally identified through genetics and cell biology, more recent work has begun to elucidate the molecular mechanisms of ESCRT-mediated membrane remodeling, with special focus on the ESCRT-III complex. In particular, several light and electron microscopic studies provide high-resolution imaging of ESCRT-III rings and spirals that purportedly drive MVB morphogenesis and abscission. These studies highlight unifying principles to ESCRT-III function, in particular: (1) the ordered assembly of the ESCRT-III monomers into a heteropolymer, (2) ESCRT-III as a dynamic complex, and (3) the role of the AAA ATPase Vps4 as a contributing factor in membrane scission. Mechanistic comparisons of ESCRT-III function in MVB morphogenesis and cytokinesis suggest common mechanisms in membrane remodeling.


Asunto(s)
Membrana Celular/fisiología , Citocinesis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/biosíntesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Modelos Biológicos , Cuerpos Multivesiculares/fisiología , Transducción de Señal/fisiología
4.
Cell ; 151(2): 356-71, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063125

RESUMEN

The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that mediate topologically similar membrane-sculpting processes, including cytokinesis, retroviral egress, and multivesicular body (MVB) biogenesis. Although ESCRT-III drives membrane remodeling that creates MVBs, its structure and the mechanism of vesicle formation are unclear. Using electron microscopy, we visualize an ESCRT-II:ESCRT-III supercomplex and propose how it mediates vesicle formation. We define conformational changes that activate ESCRT-III subunit Snf7 and show that it assembles into spiraling ~9 nm protofilaments on lipid monolayers. A high-content flow cytometry assay further demonstrates that mutations halting ESCRT-III assembly block ESCRT function. Strikingly, the addition of Vps24 and Vps2 transforms flat Snf7 spirals into membrane-sculpting helices. Finally, we show that ESCRT-II and ESCRT-III coassemble into ~65 nm diameter rings indicative of a cargo-sequestering supercomplex. We propose that ESCRT-III has distinct architectural stages that are modulated by ESCRT-II to mediate cargo capture and vesicle formation by ordered assembly.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Cuerpos Multivesiculares/química , Mutación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/metabolismo
5.
Biochem J ; 440(2): 185-93, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21895608

RESUMEN

Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular membrane compartments, in the present study we explored whether changes in the activity of the proteins that generate these compartments affect cell fusion initiated by protein fusogens of influenza virus and baculovirus. We raised the intracellular concentration of curvature-generating proteins in cells by either expressing or microinjecting the ENTH (epsin N-terminal homology) domain of epsin or by expressing the GRAF1 (GTPase regulator associated with focal adhesion kinase 1) BAR (Bin/amphiphysin/Rvs) domain or the FCHo2 (FCH domain-only protein 2) F-BAR domain. Each of these treatments promoted syncytium formation. Cell fusion extents were also influenced by treatments targeting the function of another curvature-generating protein, dynamin. Cell-membrane-permeant inhibitors of dynamin GTPase blocked expansion of fusion pores and dominant-negative mutants of dynamin influenced the syncytium formation extents. We also report that syncytium formation is inhibited by reagents lowering the content and accessibility of PtdIns(4,5)P(2), an important regulator of intracellular membrane remodelling. Our findings indicate that fusion pore expansion at late stages of cell-to-cell fusion is mediated, directly or indirectly, by intracellular membrane-shaping proteins.


Asunto(s)
Fusión Celular , Membrana Celular/ultraestructura , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Dinaminas/metabolismo , Células Gigantes/fisiología , Hemaglutininas Virales/fisiología , Ratones , Células 3T3 NIH , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estructura Terciaria de Proteína
6.
Science ; 328(5983): 1281-4, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20448150

RESUMEN

Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitosis , Proteínas/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Unión a Ácidos Grasos , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana , Ratones , Modelos Moleculares , Neuronas/citología , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Sinápticas/metabolismo
7.
Structure ; 15(7): 839-52, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17540576

RESUMEN

A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module binds liposomes via a concave face, deforming them into tubules with variable diameters of up to 130 nm. Pulse EPR studies showed the membrane-bound dimer is the same as the crystal dimer, although the N-terminal helix changed conformation on membrane binding. Mutation of a phenylalanine on this helix partially attenuated narrow tubule formation, and resulted in a gain of curvature sensitivity. This structure shows a distant relationship to curvature-sensing BAR modules, and suggests how similar coiled-coil architectures in the BAR superfamily have evolved to expand the repertoire of membrane-sculpting possibilities.


Asunto(s)
Membrana Celular/química , Modelos Moleculares , Proteínas/química , Secuencia de Aminoácidos , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de Unión a Ácidos Grasos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Proteínas de la Membrana , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA