Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 425: 20-6, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24776659

RESUMEN

This work identifies carbonated hydroxyapatite (CAP) as the primary component of canine dental calculus, and corrects the long held belief that canine dental calculus is primarily CaCO3 (calcite). CAP is known to be the principal crystalline component of human dental calculus, suggesting that there are previously unknown similarities in the calcification that occurs in these two unique oral environments. In vitro kinetic experiments mimicking the inorganic components of canine saliva have examined the mechanisms of dental calculus formation. The solutions were prepared so as to mimic the inorganic components of canine saliva; phosphate, carbonate, and magnesium ion concentrations were varied individually to investigate the roll of these ions in controlling the nature of the phases that is nucleated. To date, the inorganic components of the canine oral systems have not been investigated at concentrations that mimic those in vivo. The mineral composition of the synthetic calculi grown under these conditions closely resembled samples excised from canines. This finding adds new information about calculus formation in humans and canines, and their sensitivity to chemicals used to treat these conditions.


Asunto(s)
Cálculos Dentales/química , Compuestos Inorgánicos/química , Saliva/química , Animales , Cristalización , Perros , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Cinética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
2.
Urol Res ; 38(4): 277-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20625892

RESUMEN

Knowledge of the physical-chemical mechanisms responsible for the crystal growth and dissolution events involved in stone formation might enable the manipulation of thermodynamics in such a way as to increase the solubility of sparingly soluble phases (such as calcium oxalates and phosphates), thereby reducing the driving force for stone formation. This may be accomplished through modification of pH, reduction of supersaturation with respect to nucleating phases, and the presence of key inhibitors. If these modifications are made during the initial stages of crystallite nucleation, they could potentially reduce the participation of phases such as Randall's plaques in stone formation.


Asunto(s)
Oxalato de Calcio/química , Fosfatos de Calcio/química , Animales , Cristalización , Humanos , Concentración de Iones de Hidrógeno , Cálculos Renales/química , Estructura Molecular , Soluciones/química , Termodinámica
3.
J Bone Miner Res ; 25(3): 606-16, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20422624

RESUMEN

Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647-labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14(high) bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14(+) cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo.


Asunto(s)
Células de la Médula Ósea/metabolismo , Difosfonatos/farmacocinética , Ácido Etidrónico/análogos & derivados , Monocitos/metabolismo , Osteocitos/metabolismo , Animales , Western Blotting , Conservadores de la Densidad Ósea/química , Ácido Etidrónico/síntesis química , Ácido Etidrónico/química , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Ratones , Ratones Endogámicos C57BL , Prenilación , Conejos , Ácido Risedrónico , Proteínas de Unión al GTP rap1/metabolismo
4.
J Phys Chem B ; 114(6): 2293-300, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20104924

RESUMEN

Amelogenin (Amel) accelerates the nucleation of hydroxyapatite (HAP) in supersaturated solutions of calcium phosphate (Ca-P), shortening the induction time (delay period), under near-physiological conditions of pH, temperature, and ionic strength. Hierarchically organized Amel and amorphous calcium phosphate (ACP) nanorod microstructures are formed involving a coassembly of Amel-ACP particles at low supersaturations and low protein concentrations in a slow, well-controlled, constant composition (CC) crystallization system. At the earliest nucleation stages, the CC method allows the capture of prenucleation clusters and intermediate nanoclusers, spherical nanoparticles, and nanochains prior to enamel-like nanorod microstructure formations at later maturation stages. Amel-ACP nanoscaled building blocks are formed spontaneously by synergistic interactions between flexible Amel protein molecules and Ca-P prenucleation clusters, and these spherical nanoparticles evolve by orientated aggregation to form nanochains. Our results suggest that, in vivo, Amel may determine the structure of enamel by controlling prenucleation cluster aggregation at the earliest stages by forming stable Amel-ACP microstructures prior to subsequent crystal growth and mineral maturation.


Asunto(s)
Amelogenina/química , Hidroxiapatitas/química , Cristalización , Esmalte Dental/química , Nanotubos/química , Nanotubos/ultraestructura
5.
PLoS One ; 4(5): e5634, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19492083

RESUMEN

BACKGROUND: Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3)(-))(n)) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY: The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4)(3-)) concentration while permitting the accumulation of a high total PO(4)(3-) concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO(4)(3-) and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4',6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation. CONCLUSIONS/SIGNIFICANCE: We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled.


Asunto(s)
Calcificación Fisiológica , Polifosfatos/metabolismo , Columna Vertebral/fisiología , Adsorción , Fosfatasa Alcalina/metabolismo , Animales , Resorción Ósea/metabolismo , Calcio/metabolismo , Cartílago/citología , Cartílago/metabolismo , Bovinos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , ADN/metabolismo , Durapatita/metabolismo , Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Hidrólisis , Indoles/metabolismo , Intestinos/enzimología , Ratones , Microscopía Fluorescente , Modelos Biológicos , Especificidad de Órganos , Fosfatos/metabolismo , Columna Vertebral/citología , Columna Vertebral/metabolismo , Coloración y Etiquetado , Cloruro de Tolonio
6.
J Biomed Mater Res A ; 85(4): 993-1000, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17907244

RESUMEN

Bisphosphonates (BPs), which display a high affinity for calcium phosphate surfaces, are able to selectively target bone mineral, where they are potent inhibitors of osteoclast-mediated bone resorption. The dissolution of synthetic hydroxyapatite (HAP) has been used previously as a model for BP effects on natural bone mineral. The present work examines the influence of BPs on carbonated apatite (CAP), which mimics natural bone more closely than does HAP. Constant composition dissolution experiments were performed at pH 5.50, physiological ionic strength (0.15M) and temperature (37 degrees C). Selected BPs were added at (0.5 x 10(-6)) to (50.0 x 10(-6))M, and adsorption affinity constants, K(L), were calculated from the kinetics data. The BPs showed concentration-dependent inhibition of CAP dissolution, with significant differences in rank order zoledronate > alendronate > risedronate. In contrast, for HAP dissolution at pH 5.50, the differences between the individual BPs were considerably smaller. The extent of CAP dissolution was also dependent on the relative undersaturation, sigma, and CAP dissolution rates increased with increasing carbonate content. These results demonstrate the importance of the presence of carbonate in mediating the dissolution of CAP, and the possible involvement of bone mineral carbonate in observed differences in bone affinities of BPs in clinical use.


Asunto(s)
Apatitas/metabolismo , Difosfonatos/metabolismo , Sustitutos de Huesos/metabolismo , Difosfonatos/química , Concentración de Iones de Hidrógeno , Imidazoles/metabolismo , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Ácido Zoledrónico
7.
Biointerphases ; 1(3): 106-11, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20408623

RESUMEN

Most of the mineral crystals in bone are platelets of carbonated apatite with thicknesses of a few nanometers embedded in a collagen matrix. We report that spherical to cylindrical shaped nanosized particles are also an integral part of bone structure observed by high resolution scanning electron microscopy. High resolution back scattered electron imaging reveals that the spherical particles have a contrast similar to the crystal platelets, suggesting that they are thus likely to have similar mineral properties. By means of constant composition (CC) dissolution of bone, similar sized nanoparticles are shown to be insensitive to demineralization and are thought to be dynamically stabilized due to the absence of active pits/defects on the crystallite surfaces. Similar reproducible self-inhibited dissolution was observed with these nanoparticles during CC dissolution of synthetic carbonated apatite. This result rules out the possible influence of complicating biological factors such as the possible presence of organic matrix components and other impurities. This phenomenon can be explained by a unique dissolution model involving size considerations at the nanoscale. The unexpected presence of nanoparticles in mature bone may also be due to the stabilization of some nanosized particles during the formation process in a fluctuating biological milieux.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...