Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 27(Pt 5): 1415-1429, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876619

RESUMEN

BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 µm × 5 µm using the bendable focusing mirrors. The beam is tunable in the energy range 5-25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 µm × 1 µm beam focus and a flux up to 1015 photons s-1 with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.

3.
J Synchrotron Radiat ; 24(Pt 1): 344-353, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009577

RESUMEN

SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup.

4.
Rev Sci Instrum ; 87(2): 025102, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26931886

RESUMEN

A high precision five rotation-axes polarimeter using transmission multilayers as polarizers and reflection multilayers as analyzers has been designed and manufactured. To cover the extreme ultraviolet regime, Mo/Si, Cr/C, Sc/Cr, and W/B4C multilayers for transmission and reflection have also been designed and produced. The polarimeter mechanics is supported on a hexapod to simplify the alignment relative to photon beam. The instrument is designed so that it can be easily transferred between different beamlines.

5.
Sci Rep ; 6: 20947, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26860458

RESUMEN

The unique opportunity to study and control electron-nuclear quantum dynamics in coupled potentials offered by the resonant inelastic X-ray scattering (RIXS) technique is utilized to unravel an anomalously strong two-electron one-photon transition from core-excited to Rydberg final states in the CO molecule. High-resolution RIXS measurements of CO in the energy region of 12-14 eV are presented and analyzed by means of quantum simulations using the wave packet propagation formalism and ab initio calculations of potential energy curves and transition dipole moments. The very good overall agreement between the experimental results and the theoretical predictions allows an in-depth interpretation of the salient spectral features in terms of Coulomb mixing of "dark" with "bright" final states leading to an effective two-electron one-photon transition. The present work illustrates that the improved spectral resolution of RIXS spectra achievable today may call for more advanced theories than what has been used in the past.

6.
Sci Rep ; 7: 20054, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821751

RESUMEN

Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

7.
J Phys Condens Matter ; 25(1): 014009, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23221272

RESUMEN

The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.


Asunto(s)
Cristalización/métodos , Manganeso/química , Nanotubos/química , Nanotubos/ultraestructura , Compuestos de Silicona/química , Silicio/química , Ensayo de Materiales , Conformación Molecular
8.
J Synchrotron Radiat ; 19(Pt 5): 701-4, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22898948

RESUMEN

The new instrument for near-ambient-pressure X-ray photoelectron spectroscopy which has been installed at the MAX II ring of the Swedish synchrotron radiation facility MAX IV Laboratory in Lund is presented. The new instrument, which is based on a SPECS PHOIBOS 150 NAP analyser, is the first to feature the use of retractable and exchangeable high-pressure cells. This implies that clean vacuum conditions are retained in the instrument's analysis chamber and that it is possible to swiftly change between near-ambient and ultrahigh-vacuum conditions. In this way the instrument implements a direct link between ultrahigh-vacuum and in situ studies, and the entire pressure range from ultrahigh-vacuum to near-ambient conditions is available to the user. Measurements at pressures up to 10(-5) mbar are carried out in the ultrahigh-vacuum analysis chamber, while measurements at higher pressures are performed in the high-pressure cell. The installation of a mass spectrometer on the exhaust line of the reaction cell offers the users the additional dimension of simultaneous reaction data monitoring. Moreover, the chosen design approach allows the use of dedicated cells for different sample environments, rendering the Swedish ambient-pressure X-ray photoelectron spectroscopy instrument a highly versatile and flexible tool.

9.
Rev Sci Instrum ; 83(12): 123109, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23277974

RESUMEN

We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.


Asunto(s)
Electrones , Rayos Láser , Luz , Dispersión de Radiación , Simulación de Dinámica Molecular , Análisis Espectral , Factores de Tiempo , Rayos X
10.
J Chem Phys ; 133(22): 224704, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21171693

RESUMEN

The fast development of new organic sensitizers leads to the need for a better understanding of the complexity and significance of their adsorption processes on TiO(2) surfaces. We have investigated a prototype of the triphenylamine-cyanoacrylic acid (donor-acceptor) on rutile TiO(2) (110) surface with special attention on the monolayer region. This molecule belongs to the type of dye, some of which so far has delivered the record efficiency of 10%-10.3% for pure organic sensitizers [W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Chem. Mater. 22, 1915 (2010)]. The molecular configuration of this dye on the TiO(2) surface was found to vary with coverage and adopt gradually an upright geometry, as determined from near edge x-ray absorption fine structure spectroscopy. Due to the molecular interaction within the increasingly dense packed layer, the molecular electronic structure changes systematically: all energy levels shift to higher binding energies, as shown by photoelectron spectroscopy. Furthermore, the investigation of charge delocalization within the molecule was carried out by means of resonant photoelectron spectroscopy. A fast delocalization (∼1.8 fs) occurs at the donor part while a competing process between delocalization and localization takes place at the acceptor part. This depicts the "push-pull" concept in donor-acceptor molecular system in time scale.

11.
Phys Rev Lett ; 104(19): 193002, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20866962

RESUMEN

Inelastic x-ray scattering spectra excited at the 1s(-1)π* resonance of gas phase O2 have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B'(3)Πg final state is controlled.

12.
J Phys Chem B ; 113(49): 16002-6, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19916538

RESUMEN

Nitrogen and oxygen K emission spectra of glycine in the form of anions, zwitterions, and cations in aqueous solution are presented. It is shown that protonation has a dramatic influence on the local electronic structure and that the functional groups give a distinct spectral fingerprint.


Asunto(s)
Electrones , Glicina/química , Agua/química , Concentración de Iones de Hidrógeno , Nitrógeno/química , Oxígeno/química , Soluciones , Espectrometría por Rayos X
13.
J Phys Chem B ; 113(24): 8201-5, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19473020

RESUMEN

Oxygen K absorption and emission spectra of water molecules confined in dodecyltrimethyl ammonium chloride micelle structures are presented. The local electronic structure of the water molecules is found to be dramatically different from the electronic structure of water molecules in the gas-phase as well as in liquid water. Hybridization with states of the ions in the surrounding ions is directly observed, and evidence for stabilization of the water molecules relative to molecules in bulk water is found.


Asunto(s)
Electrones , Micelas , Compuestos de Amonio Cuaternario/química , Agua/química , Modelos Moleculares , Espectrometría por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...