Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Chem Commun (Camb) ; 60(36): 4810-4813, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38602391

RESUMEN

The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.


Asunto(s)
Péptidos de Penetración Celular , Glicina , Compuestos Heterocíclicos con 2 Anillos , Imidazolidinas , Compuestos Macrocíclicos , Glicina/química , Glicina/análogos & derivados , Glicina/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Imidazoles/química , Humanos , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/metabolismo , Adamantano/química , Adamantano/análogos & derivados , Membrana Celular/metabolismo , Membrana Celular/química , Transporte Biológico
2.
Chemistry ; 30(28): e202400174, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456376

RESUMEN

We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.


Asunto(s)
Calixarenos , Péptidos de Penetración Celular , Cricetulus , Calixarenos/química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Humanos , Células CHO , Animales , Relación Estructura-Actividad , Línea Celular Tumoral , Fenoles/química , Endocitosis , Tensoactivos/química
3.
Adv Mater ; 36(4): e2306922, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37703578

RESUMEN

The design of synthetic systems with interrelated reaction sequences that model incipient biological complexity is limited by physicochemical tools that allow the direct monitoring of the individual processes in real-time. To mimic a simple digestion-resorption sequence, the authors have designed compartmentalized liposomal systems that incorporate extra- and intravesicular chemosensing ensembles. The extravesicular reporter pair consists of cucurbit[7]uril and methylene blue to monitor the enzymatic cleavage of short enkephalin-related peptides by thermolysin through a switch-off fluorescence response ("digestion"). Because the substrate is membrane-impermeable, but the dipeptide product is permeable, uptake of the latter into the pre-formed liposomes occurs as a follow-up process. The intravesicular chemosensing ensemble consists of i) cucurbit[8]uril, 2-anilinonaphthalene-6-sulfonic acid, and methyl viologen or ii) cucurbit[7]uril and berberine to monitor the uptake ("resorption") of the enzymatic products through the liposomal membranes by i) a switch-on or ii) a switch-off fluorescence response. The dyes are designed to allow selective optical excitation and read-out of the extra- and intravesicular dyes, which allow for dual-color chemosensing and, therefore, kinetic discrimination of the two sequential reactions.


Asunto(s)
Colorantes Fluorescentes , Péptidos , Hidrocarburos Aromáticos con Puentes
4.
Patient Saf Surg ; 16(1): 31, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109755

RESUMEN

BACKGROUND: Traumatic aortic injuries (TAIs) are rare but are associated with a high mortality. Prior studies have shown skiers and pilots, whose injuries occur at high altitudes, are at an increased risk for a TAI. The purpose of this study was to examine the effect of altitude on the incidence of TAIs across all causes of injury. METHODS: This retrospective cohort study at six Level I trauma centers (8/1/2016-1/1/2020) included adult blunt trauma patients with a chest or abdomen injury. High altitude injuries (> 5000 ft.) were compared to low altitude injuries (≤ 5000 ft.). The primary outcome was incidence of TAI. RESULTS: There were 8562 patients, 37% were at high altitude and 63% at low altitude. High altitude patients were older (p < 0.01), more often Caucasian (p < 0.01) and had a higher ISS (p < 0.01). There was a significantly greater incidence of TAI at high altitude than low altitude (1.5% vs. 1.1%, p = 0.01). The median altitude was significantly higher for patients with a TAI than for patients without a TAI (5100 ft. vs. 1400 ft., p = 0.01). After adjustment, high altitude patients had 2-fold [OR: 2.4 (1.6, 3.7)] greater odds of having a TAI than low altitude patients. CONCLUSION: TAIs were more prevalent among high altitude injuries. Providers should be aware of the increased incidence of TAIs at high altitudes particularly when there is a delay in diagnosis and transfer to a trauma center with appropriate resources to manage these critical injuries. TAI screening at high altitude trauma centers may improve survival rates.

5.
Angew Chem Int Ed Engl ; 61(35): e202207950, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35687027

RESUMEN

An overarching challenge in the development of supramolecular sensor systems is to enhance their sensitivity, which commonly involves the synthesis of refined receptors with increased affinity to the analyte. We show that a dramatic sensitivity increase by 1-2 orders of magnitude can be achieved by encapsulating supramolecular chemosensors inside liposomes and exposing them to a pH gradient across the lipid bilayer membrane. This causes an imbalance of the influx and efflux rates of basic and acidic analytes leading to a significantly increased concentration of the analyte in the liposome interior. The utility of our liposome-enhanced sensors was demonstrated with various host-dye reporter pairs and sensing mechanisms, and we could easily increase the sensitivity towards multiple biologically relevant analytes, including the neurotransmitters serotonin and tryptamine.


Asunto(s)
Liposomas , Protones , Concentración de Iones de Hidrógeno , Liposomas/química
6.
RSC Adv ; 12(17): 10725-10748, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35425010

RESUMEN

Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.

7.
Nature ; 603(7902): 637-642, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322251

RESUMEN

The membrane translocation of hydrophilic substances constitutes a challenge for their application as therapeutic compounds and labelling probes1-4. To remedy this, charged amphiphilic molecules have been classically used as carriers3,5. However, such amphiphilic carriers may cause aggregation and non-specific membrane lysis6,7. Here we show that globular dodecaborate clusters, and prominently B12Br122-, can function as anionic inorganic membrane carriers for a broad range of hydrophilic cargo molecules (with molecular mass of 146-4,500 Da). We show that cationic and neutral peptides, amino acids, neurotransmitters, vitamins, antibiotics and drugs can be carried across liposomal membranes. Mechanistic transport studies reveal that the carrier activity is related to the superchaotropic nature of these cluster anions8-12. We demonstrate that B12Br122- affects cytosolic uptake of different small bioactive molecules, including the antineoplastic monomethyl auristatin F, the proteolysis targeting chimera dBET1 and the phalloidin toxin, which has been successfully delivered in living cells for cytoskeleton labelling. We anticipate the broad and distinct delivery spectrum of our superchaotropic carriers to be the starting point of conceptually distinct cell-biological, neurobiological, physiological and pharmaceutical studies.


Asunto(s)
Boro , Péptidos , Aniones/química , Transporte Biológico , Cationes , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Preparaciones Farmacéuticas
8.
Int J Radiat Oncol Biol Phys ; 113(1): 214-227, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074434

RESUMEN

PURPOSE: Our purpose was to investigate whether liver stereotactic body radiation therapy treatment planning can be harmonized across different treatment planning systems, delivery techniques, and institutions by using a specific prescription method and to minimize the knowledge gap concerning intersystem and interuser differences. We provide best practice guidelines for all used techniques. METHODS AND MATERIALS: A multiparametric specification of target dose (gross target volume [GTV]D50%, GTVD0.1cc, GTVV90%, planning target volume [PTV]V70%) with a prescription dose of GTVD50% = 3 × 20 Gy and organ-at-risk (OAR) limits were distributed with computed tomography and structure sets from 3 patients with liver metastases. Thirty-five institutions provided 132 treatment plans using different irradiation techniques. These plans were first analyzed for target and OAR doses. Four different renormalization methods were performed (PTVDmin, PTVD98%, PTVD2%, PTVDmax). The resulting 660 treatments plans were evaluated regarding target doses to study the effect of dose renormalization to different prescription methods. A relative scoring system was used for comparisons. RESULTS: GTVD50% prescription can be performed in all systems. Treatment plan harmonization was overall successful, with standard deviations for Dmax, PTVD98%, GTVD98%, and PTVDmean of 1.6, 3.3, 1.9, and 1.5 Gy, respectively. Primary analysis showed 55 major deviations from clinical goals in 132 plans, whereas in only <20% of deviations GTV/PTV dose was traded for meeting OAR limits. GTVD50% prescription produced the smallest deviation from target planning objectives and between techniques, followed by the PTVDmax, PTVD98%, PTVD2%, and PTVDmin prescription. Deviations were significant for all combinations but for the PTVDmax prescription compared with GTVD50% and PTVD98%. Based on the various dose prescription methods, all systems significantly differed from each other, whereas GTVD50% and PTVD98% prescription showed the least difference between the systems. CONCLUSIONS: This study showed the feasibility of harmonizing liver stereotactic body radiation therapy treatment plans across different treatment planning systems and delivery techniques when a sufficient set of clinical goals is given.


Asunto(s)
Neoplasias Hepáticas , Radiocirugia , Radioterapia de Intensidad Modulada , Benchmarking , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
9.
Org Biomol Chem ; 19(39): 8521-8529, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34378628

RESUMEN

The accurate determination of ultra-high binding affinities in supramolecular host-guest chemistry is a challenging endeavour because direct binding titrations are generally limited to affinities <106 M-1 due to sensitivity constraints of common titration methods. To determine higher affinities, competitive titrations are usually performed, in which one compound with a well established binding affinity serves as a reference. Herein, we propose a reference scale for such competitive titrations with the host cucurbit[7]uril (CB7) comprising binding affinities in the range from 103 to 1015 M-1. The suggested reference compounds are commercially available and will aid in the future determination of CB7 binding affinities for stimuli-responsive host-guest systems.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119579, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33611219

RESUMEN

In view of the anticancer effect of nitrosoureas a set of four new N-(2-chloroethyl)-N-nitrosourea (CENU) derivatives was synthesized. An in silico absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) prediction study revealed that the CENU derivatives satisfied all the required criteria for oral administration and introduced them as remarkable anticancer candidates in the central nervous system (CNS). A comparative solvatochromic study including the Kamlet-Taft, Catalán and Laurence models indicated that the solvatochromic behavior of the CENUs depended on both, unspecific and specific solvent-solute interactions. In detail, the solvatochromic effect of the solvent polarity on the absorption and emission maxima was significant for all CENUs, whereas the solvatochromic effect of the solvent's ability to donate or accept hydrogen bonds on the absorption and emission maxima was critically dependent on the electron density of the N'-aryl group. From the solvatochromic comparison method, excellent correlations (r ≥ 0.890) were obtained between the ADME parameters and the solvatochromic regression coefficients obtained by the Catalán model. As potential stabilizers, inclusion complexes of the investigated CENU derivatives with ß-cyclodextrin (ß-CD) were also explored. The spectrofluorimetric host-guest experiments included double-reciprocal Benesi-Hildebrand plots as well as the molar ratio and continuous variation plots (Job's plots), which established a 1:1 ß-CD to CENU binding stoichiometry and relatively high affinities of ß-CD for CENU derivatives.


Asunto(s)
beta-Ciclodextrinas , Simulación por Computador , Enlace de Hidrógeno , Soluciones , Solventes
11.
ACS Sens ; 6(1): 175-182, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33347764

RESUMEN

Time-resolved monitoring of the permeability of analytes is of utmost importance in membrane research. Existing methods are restricted to single-point determinations or flat synthetic membranes, limiting access to biologically relevant kinetic parameters (permeation rate constant, permeation coefficients). We now use the recently introduced fluorescent artificial receptor membrane assay (FARMA) as a method to monitor, in real time, the permeation of indole derivatives through liposomal membranes of different lipid compositions. This method is based on the liposomal encapsulation of a chemosensing ensemble or "fluorescent artificial receptor", consisting of 2,7-dimethyldiazapyrenium as a fluorescent dye and cucurbit[8]uril as the macrocyclic receptor, that responds to the complexation of a permeating aromatic analyte by fluorescence quenching. FARMA does not require a fluorescent labeling of the analytes and allows access to permeability coefficients in the range from 10-8 to 10-4 cm s-1. The effect of temperature on the permeation rate of a series of indole derivatives across the phospholipid membranes was studied. The activation energies for permeation through POPC/POPS phospholipid membranes were in the range of 28-96 kJ mol-1. To study the effect of different lipid phases on the membrane permeability, we performed experiments with DPPC/DOPS vesicles, which showed a phase transition from a gel phase to a liquid-crystalline phase, where the activation energies for the permeation process were expected to show a dramatic change. Accordingly, for the permeation of the indole derivatives into the DPPC/DOPS liposomes, discontinuities were observed in the Arrhenius plots, from which the permeation activation energies for the distinct phases could be determined, for example, for tryptamine 245 kJ mol-1 in the gel phase and 47 kJ mol-1 in the liquid-crystalline phase.


Asunto(s)
Membranas Artificiales , Receptores Artificiales , Liposomas , Permeabilidad , Fosfatidilcolinas
12.
Angew Chem Int Ed Engl ; 60(4): 1875-1882, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33051947

RESUMEN

Lysine (K) is an important target residue for protein and peptide delivery across membranes. K is the most frequently exposed residue in proteins, leading to high demand for the development of K-compatible transport activators. However, designing activators for K-rich peptides and proteins is more challenging than for arginine-rich species because of the kosmotropic nature of K and its recognition difficulty. In this study, we designed a new amphiphilic sulfonatocalix[5]arene (sCx5-6C) as a K-compatible transport activator. sCx5-6C was tailored with two key elements, recognition of K and the ability to embed into membranes. We measured the membrane transport efficiencies of α-poly-l-lysine, heptalysine, and histones across artificial membranes and of α-poly-l-lysine into live cells, activated by sCx5-6C. The results demonstrate that sCx5-6C acts as an efficient activator for translocating K-rich peptides and proteins, which cannot be achieved by known arginine-compatible activators.


Asunto(s)
Calixarenos/química , Lisina/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Ácidos Sulfónicos/química , Membrana Celular/metabolismo , Membranas Artificiales , Transporte de Proteínas
13.
Front Chem ; 8: 597927, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330387

RESUMEN

Parallel artificial membrane permeability assay (PAMPA) is a screening tool for the evaluation of drug permeability across various biological membrane systems in a microplate format. In PAMPA, a drug candidate is allowed to pass through the lipid layer of a particular well during an incubation period of, typically, 10-16 h. In a second step, the samples of each well are transferred to a UV-Vis-compatible microplate and optically measured (applicable only to analytes with sufficient absorbance) or sampled by mass-spectrometric analysis. The required incubation period, sample transfer, and detection methods jointly limit the scalability of PAMPA to high-throughput screening format. We introduce a modification of the PAMPA method that allows direct fluorescence detection, without sample transfer, in real time (RT-PAMPA). The method employs the use of a fluorescent artificial receptor (FAR), composed of a macrocycle in combination with an encapsulated fluorescent dye, administered in the acceptor chamber of conventional PAMPA microplates. Because the detection principle relies on the molecular recognition of an analyte by the receptor and the associated fluorescence response, concentration changes of any analyte that binds to the receptor can be monitored (molecules with aromatic residues in the present example), regardless of the spectroscopic properties of the analyte itself. Moreover, because the fluorescence of the (upper) acceptor well can be read out directly by fluorescence in a microplate reader, the permeation of the drug through the planar lipid layer can be monitored in real time. Compared with the traditional assay, RT-PAMPA allows not only quantification of the permeability characteristics but also rapid differentiation between fast and slow diffusion events.

14.
Front Chem ; 8: 806, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134264

RESUMEN

We report the use of the macrocyclic host cucurbit[7]uril (CB7) as a supramolecular additive in nanosecond time-resolved fluorescence (Nano-TRF) assays for proteases to enhance the discrimination of substrates and products and, thereby, the sensitivity. A peptide substrate was labeled with 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a long-lived (>300 ns) fluorescent probe and 3-nitrotyrosine was established as a non-fluorescent fluorescence resonance energy transfer (FRET) acceptor that acts as a "dark quencher." The substrate was cleaved by the model proteases trypsin and chymotrypsin and the effects of the addition of CB7 to the enzyme assay mixture were investigated in detail using UV/VIS absorption as well as steady-state and time-resolved fluorescence spectroscopy. This also allowed us to identify the DBO and nitrotyrosine residues as preferential binding sites for CB7 and suggested a hairpin conformation of the peptide, in which the guanidinium side chain of an arginine residue is additionally bound to a vacant ureido rim of one of the CB7 hosts.

15.
Commun Biol ; 3(1): 383, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669621

RESUMEN

The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10-9-10-3 cm s-1. From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity.


Asunto(s)
Permeabilidad de la Membrana Celular , Colorantes Fluorescentes , Proteínas de Transporte de Membrana/metabolismo , Receptores Artificiales , Ensayos Analíticos de Alto Rendimiento , Membrana Dobles de Lípidos , Liposomas , Sensibilidad y Especificidad , Análisis Espacio-Temporal , Relación Estructura-Actividad
16.
Chembiochem ; 21(7): 886-910, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31803982

RESUMEN

The combination of supramolecular functional systems with biomolecular chemistry has been a fruitful exercise for decades, leading to a greater understanding of biomolecules and to a great variety of applications, for example, in drug delivery and sensing. Within these developments, the phospholipid bilayer membrane, surrounding live cells, with all its functions has also intrigued supramolecular chemists. Herein, recent efforts from the supramolecular chemistry community to mimic natural functions of lipid membranes, such as sensing, molecular recognition, membrane fusion, signal transduction, and gated transport, are reviewed.


Asunto(s)
Portadores de Fármacos/química , Membrana Dobles de Lípidos/química , Transporte Biológico , Complejos de Coordinación/química , Humanos , Fusión de Membrana , Fosfolípidos/química , Transducción de Señal
17.
J Am Chem Soc ; 141(51): 20137-20145, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31739668

RESUMEN

The membrane transport mechanisms of cell-penetrating peptides (CPPs) are still controversial, and reliable assays to report on their internalization in model membranes are required. Herein, we introduce a label-free, fluorescence-based method to monitor membrane transport of peptides in real time. For this purpose, a macrocyclic host and a fluorescent dye forming a host-dye reporter pair are encapsulated inside phospholipid vesicles. Internalization of peptides, which can bind to the supramolecular host, leads to displacement of the dye from the host, resulting in a fluorescence change that signals the peptide uptake and, thus, provides unambiguous evidence for their transport through the membrane. The method was successfully validated with various established CPPs, including the elusive peptide TP2, in the presence of counterion activators of CPPs, and with a calixarene-based supramolecular membrane transport system. In addition, transport experiments with encapsulated host-dye reporter pairs are not limited to large unilamellar vesicles (LUVs) but can also be used with giant unilamellar vesicles (GUVs) and fluorescence microscopy imaging.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Fluorescencia , Colorantes Fluorescentes/metabolismo , Compuestos Macrocíclicos/metabolismo , Liposomas Unilamelares/metabolismo , Transporte Biológico , Péptidos de Penetración Celular/química , Colorantes Fluorescentes/química , Compuestos Macrocíclicos/química , Microscopía Fluorescente , Estructura Molecular , Imagen Óptica , Liposomas Unilamelares/química
18.
ChemistryOpen ; 8(11): 1350-1354, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31741820

RESUMEN

The combination of the macrocyclic hosts p-sulfonatocalix[4]arene and cucurbit[7]uril with the fluorescent dyes lucigenin and berberine affords two label-free enzyme assays for the detection of kinase and phosphatase activity by fluorescence monitoring. In contrast to established assays, no substrate labeling is required. Since phosphorylation is one of the most important regulatory mechanisms in biological signal transduction, the assays should be useful for identification of inhibitors and activators in high-throughput screening (HTS) format for drug discovery.

19.
Chem Commun (Camb) ; 55(94): 14123-14126, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31690892

RESUMEN

A putrescine derivative of aminomethyladamantane is established as a ditopic guest with two mutually exclusive binding sites for cucurbit[6]uril and cucurbit[7]uril. A mixture containing both hosts, the ditopic guest, and two fluorescent dyes affords a relay system with a ratiometric fluorescence response and enables a kinetic analysis of the switching mechanism.

20.
Sensors (Basel) ; 19(19)2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547579

RESUMEN

This article presents a new configurable wireless sensor system. The system is used to perform amperometric measurements and send the measurement data to a handheld reader using a wireless transponder interface. The two-chip sensor system was implemented in a 0.35 µm CMOS technology. The system consists of an integrated nano-potentiostat that performs the actual measurements and an ISO 18000-3 compliant frontend that enables wireless telemetric data transmission and powering of the entire sensor system. The system was manufactured in combination with a chronoamperometric glucose sensor which allows the measurement of the glucose content in tear fluid and thus a non-invasive determination of the blood sugar level. For a range of sensor currents from 0.1 µA to 10 µA, the potentiostat achieved an accuracy of better than 5 % with a total power dissipation of less than 600 µW. With the realized antenna geometry a wireless communication distance of more than 7 cm has been achieved.


Asunto(s)
Técnicas Biosensibles/métodos , Tecnología Inalámbrica , Telemetría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...