Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CBE Life Sci Educ ; 23(2): ar24, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38728229

RESUMEN

Cisheteronormative ideologies are infused into every aspect of society, including undergraduate science. We set out to identify the extent to which students can identify cisheteronormative language in biology textbooks by posing several hypothetical textbook questions and asking students to modify them to make the language more accurate (defined as "correct; precise; using language that applies to all people"). First, we confirmed that textbooks commonly use language that conflates or confuses sex and gender. We used this information to design two sample questions that used similar language. We examined what parts of the questions students modified, and the changes they recommended. When asked to modify sample textbook questions, we found the most common terms or words that students identified as inaccurate were related to infant gender identity. The most common modifications that students made were changing gender terms to sex terms. Students' decisions in this exercise differed little across three large biology courses or by exam performance. As the science community strives to promote inclusive classrooms and embrace the complexity of human gender identities, we provide foundational information about students' ability to notice and correct inaccurate language related to sex and gender in biology.


Asunto(s)
Biología , Identidad de Género , Lenguaje , Estudiantes , Humanos , Biología/educación , Masculino , Femenino , Evaluación Educacional
2.
CBE Life Sci Educ ; 22(3): ar28, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37279089

RESUMEN

Traditional biology curricula depict science as an objective field, overlooking the important influence that human values and biases have on what is studied and who can be a scientist. We can work to address this shortcoming by incorporating ideological awareness into the curriculum, which is an understanding of biases, stereotypes, and assumptions that shape contemporary and historical science. We surveyed a national sample of lower-level biology instructors to determine 1) why it is important for students to learn science, 2) the perceived educational value of ideological awareness in the classroom, and 3) hesitancies associated with ideological awareness implementation. We found that most instructors reported "understanding the world" as the main goal of science education. Despite the perceived value of ideological awareness, such as increasing student engagement and dispelling misconceptions, instructors were hesitant to implement ideological awareness modules due to potential personal and professional consequences.


Asunto(s)
Curriculum , Estudiantes , Humanos , Aprendizaje , Miedo , Biología/educación
3.
Ecol Evol ; 12(10): e9396, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36262264

RESUMEN

A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.

4.
J Microbiol Biol Educ ; 23(1)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35496682

RESUMEN

The global spread of the novel coronavirus first reported in December 2019 led to drastic changes in the social and economic dynamics of everyday life. Nationwide, racial, gender, and geographic disparities in symptom severity, mortality, and access to health care evolved, which impacted stress and anxiety surrounding COVID-19. On university campuses, drastic shifts in learning environments occurred as universities shifted to remote instruction, which further impacted student mental health and anxiety. Our study aimed to understand how students from diverse backgrounds differ in their worry and stress surrounding COVID-19 upon return to hybrid or in-person classes during the Fall of 2020. Specifically, we addressed the differences in COVID-19 worry, stress response, and COVID-19-related food insecurity related to race/ethnicity (Indigenous American, Asian/Asian American, black/African American, Latinx/Hispanic, white, or multiple races), gender (male, female, and gender expressive), and geographic origin (ranging from rural to large metropolitan areas) of undergraduate students attending a regional-serving R2 university, in the southeastern U.S. Overall, we found significance in worry, food insecurity, and stress responses with females and gender expressive individuals, along with Hispanic/Latinx, Asian/Asian American, and black/African American students. Additionally, students from large urban areas were more worried about contracting the virus compared to students from rural locations. However, we found fewer differences in self-reported COVID-related stress responses within these students. Our findings can highlight the disparities among students' worry based on gender, racial differences, and geographic origins, with potential implications for mental health of university students from diverse backgrounds. Our results support the inclusion of diverse voices in university decisioning making around the transition through the COVID-19 pandemic.

5.
Ecology ; 103(1): e03546, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618916

RESUMEN

The loss of aboveground plant diversity alters belowground ecosystem function; yet, the mechanisms underpinning this relationship and the degree to which plant community structure and climate mediate the effects of plant species loss remain unclear. Here, we explored how plant species loss through experimental removal shaped belowground function in ecosystems characterized by different climatic regimes and edaphic properties. We measured plant community composition as well as potential carbon (C) and nitrogen (N) mineralization and microbial extracellular enzyme activity in soils collected from four unique plant removal experiments located along an elevational gradient in Colorado, USA. We found that, regardless of the identity of the removed species or the climate at each site, plant removal decreased the absolute variation in potential N mineralization rates and marginally reduced the magnitude of N mineralization rates. While plant species removal also marginally reduced C mineralization rates, C mineralization, unlike N mineralization, displayed sensitivity to the climatic and edaphic differences among sites, where C mineralization was greatest at the high elevation site that receives the most precipitation annually and contains the largest soil total C pool. Plant removal had little impact on soil enzyme activity. Removal effects were not contingent on the amount of biomass removed annually, and shifts in mineralization rates occurred despite only marginal shifts in plant community structure following plant species removal. Our results present a surprisingly simple and consistent pattern of belowground response to the loss of dominant plant species across an elevational gradient with different climatic and edaphic properties, suggesting a common response of belowground ecosystem function to plant species loss regardless of which plant species are lost or the broader climatic context.


Asunto(s)
Ecosistema , Plantas , Biomasa , Nitrógeno , Suelo , Microbiología del Suelo
6.
Ecology ; 102(11): e03504, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34319599

RESUMEN

Spatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5-12 yr of data on 1,447 plant species from 49 grasslands on five continents, we show that local abundance and species persistence under ambient conditions are both effective predictors of local extinction risk following experimental exclusion of grazers or addition of nutrients; persistence was a more powerful predictor than local abundance. While perturbations increased the risk of exclusion for low persistence and abundance species, transient but abundant species were also highly likely to be excluded from a perturbed plot relative to ambient conditions. Moreover, low persistence and low abundance species that were not excluded from perturbed plots tended to have a modest increase in abundance following perturbance. Last, even core species with high abundances had large decreases in persistence and increased losses in perturbed plots, threatening the long-term stability of these grasslands. Our results demonstrate that expanding the concept of rarity to include temporal dynamics, in addition to local abundance, more effectively predicts extinction risk in response to environmental change than either rarity axis predicts alone.


Asunto(s)
Extinción Biológica , Plantas , Humanos
7.
Nat Commun ; 12(1): 3484, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108462

RESUMEN

Ecosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities. Nutrient addition also reduces co-occurrences within and among fungal guilds, which could have important consequences for belowground interactions. Focusing only on plots that received no nutrient addition, soil properties influence pathogen abundance globally, whereas plant community characteristics influence mutualists, and climate influence saprotrophs. We show consistent, guild-level responses that enhance our ability to predict shifts in soil function related to anthropogenic eutrophication, which can have longer-term consequences for plant communities.


Asunto(s)
Fertilizantes , Hongos/aislamiento & purificación , Nitrógeno/farmacología , Fósforo/farmacología , Microbiología del Suelo , Fertilizantes/análisis , Hongos/efectos de los fármacos , Pradera , Micorrizas/efectos de los fármacos , Micorrizas/aislamiento & purificación , Micorrizas/fisiología , Nitrógeno/análisis , Nutrientes/análisis , Nutrientes/farmacología , Fósforo/análisis , Raíces de Plantas/microbiología , Suelo/química
8.
Ecol Lett ; 24(3): 487-497, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33300281

RESUMEN

Plant diversity and plant-consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosystem respiration (Re ) and net ecosystem exchange (NEE). Increasing plant diversity increased plant biomass, GPP and Re , but NEE remained unchanged. Removing foliar fungi increased GPP and NEE, with the greatest effects at low plant diversity. After accounting for plant biomass, we found that removing foliar fungi increased mass-specific flux rates in the low-diversity plant communities by altering plant species composition and community-wide foliar nitrogen content. However, this effect disappeared when soil fungi and arthropods were also removed, demonstrating that both plant diversity and interactions among consumer groups determine the ecosystem-scale effects of plant-fungal interactions.


Asunto(s)
Ecosistema , Pradera , Animales , Biodiversidad , Biomasa , Carbono , Ciclo del Carbono , Hongos , Suelo
9.
Ecology ; 102(1): e03210, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32981067

RESUMEN

Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within-host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7-yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient-induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host, Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relative Andropogon cover, endophyte diversity did not covary with live plant biomass or Andropogon cover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment.


Asunto(s)
Endófitos , Hongos , Nutrientes , Plantas , Poaceae
10.
Proc Biol Sci ; 287(1929): 20200877, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32576104

RESUMEN

Textbooks shape teaching and learning in introductory biology and highlight scientists as potential role models who are responsible for significant discoveries. We explore a potential demographic mismatch between the scientists featured in textbooks and the students who use textbooks to learn core concepts in biology. We conducted a demographic analysis by extracting hundreds of human names from common biology textbooks and assessing the binary gender and race of featured scientists. We found that the most common scientists featured in textbooks are white men. However, women and scientists of colour are increasingly represented in contemporary scientific discoveries. In fact, the proportion of women highlighted in textbooks has increased in lockstep with the proportion of women in the field, indicating that textbooks are matching a changing demographic landscape. Despite these gains, the scientists portrayed in textbooks are not representative of their target audience-the student population. Overall, very few scientists of colour were highlighted, and projections suggest it could take multiple centuries at current rates before we reach inclusive representation. We call upon textbook publishers to expand upon the scientists they highlight to reflect the diverse population of learners in biology.


Asunto(s)
Biología/educación , Demografía , Femenino , Humanos , Aprendizaje , Masculino
11.
Am J Bot ; 106(11): 1423-1434, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31657872

RESUMEN

PREMISE: Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition. METHODS: In the first study, we inoculated a single genotype of Populus deltoides with individual root endophytic bacteria and measured plant phenotype. Next, data from this single inoculation were used to predict phenotypic traits after mixed three-strain community inoculations, which we tested in the second experiment. RESULTS: By itself, each bacterial endophyte significantly but weakly altered plant phenotype relative to noninoculated plants. In a mixture, bacterial strain Burkholderia BT03, constituted at least 98% of community relative abundance. Yet, plant resource allocation and tissue nutrient concentrations were disproportionately influenced by Pseudomonas sp. GM17, GM30, and GM41. We found a 10% increase in leaf mass fraction and an 11% decrease in root mass fraction when replacing Pseudomonas GM17 with GM41 in communities containing both Pseudomonas GM30 and Burkholderia BT03. CONCLUSIONS: Our results indicate that interactions among endophytic bacteria may drive plant phenotype over the contribution of each strain individually. Additionally, we have shown that low-abundance strains contribute to plant phenotype challenging the assumption that the dominant strains will drive plant function.


Asunto(s)
Endófitos , Populus , Bacterias , Nutrientes , Raíces de Plantas , Asignación de Recursos
12.
PeerJ ; 6: e5682, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425882

RESUMEN

Hemiparasitic plants increase plant biodiversity by reducing the abundance of dominant plant species, allowing for the establishment of subordinate species. Hemiparasites reduce host resources by directly removing nutrients from hosts, competing for light and space, and may indirectly reduce host resources by disrupting plant associations with symbiotic root fungi, like arbuscular mycorrhizal fungi and dark-septate endophytes. Here, we explored how a generalist hemiparasite, Castilleja, influences plant richness, evenness, community composition, and mycorrhizal colonization patterns across a ∼1,000 m elevational gradient in the North American Rocky Mountains. We hypothesized that the presence of Castilleja would be associated with increased plant richness and evenness, shaping plant community composition, and would reduce mycorrhizal colonization within dominant plant taxa. However, the magnitude of the effects would be contingent upon climate contexts, that is, elevation. Overall, we found that the presence of Castilleja was associated with an 11% increase in plant richness and a 5% increase in plant evenness, regardless of elevation. However, we found that the presence of Castilleja influenced plant composition at only two of the five sites and at the remaining three of five sites, plot pairing was the only predictor that influenced composition. Additionally, we found that the presence of Castilleja reduced mycorrhizal fungal colonization within dominant plant species by ∼20%, regardless of elevation. Taken together, our results suggest that hemiparasites regulate plant diversity, evenness, and interactions with mycorrhizal fungi independent of abiotic and biotic contexts occurring at the site, although overall effect on community composition is likely driven by site-level factors.

13.
Mycologia ; 110(4): 654-665, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30130455

RESUMEN

The Andean Puna is an arid, high-elevation plateau in which plants such as grasses experience high abiotic stress and distinctive environmental conditions. We assessed colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in the roots of 20 native grass species and examined the relationship between root-associated fungi (AMF and DSE) as a function of the elevation of study sites, the photosynthetic pathways of the grass hosts, and the hosts' life cycles. In general, grasses were co-colonized by AMF and DSE and the colonization by AMF and DSE was not extensive. The extension of colonization of AMF and that of DSE were positively correlated, as were number of arbuscules and DSE colonization extension. The extension of AMF colonization differed among sites with different elevations, but DSE colonization was similar across sites. Overall, AMF and DSE patterns shifted as a function of elevation in most grass species, with no general trends observed with respect to host photosynthetic pathway or life cycle. In general, our observations differ from previous studies in the Northern Hemisphere. Variation among sites in AMF and DSE colonization was greater than variation that could be explained by the other factors considered here, suggesting a strong influence of environmental factors. We predict that both AMF and DSE may have established synergistic and beneficial associations with grasses in these distinctive and harsh ecosystems.


Asunto(s)
Endófitos/aislamiento & purificación , Interacciones Microbiota-Huesped , Micorrizas/aislamiento & purificación , Poaceae/microbiología , Argentina , Ecosistema , Endófitos/fisiología , Micorrizas/fisiología , Micorrizas/ultraestructura , Fotosíntesis/fisiología , Filogenia , Raíces de Plantas/microbiología , Plantas/anatomía & histología , Plantas/microbiología , Microbiología del Suelo
14.
Ecology ; 98(7): 1757-1763, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28380683

RESUMEN

Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Ecosistema , Hongos/clasificación , Microbiología del Suelo , Suelo
15.
PeerJ ; 4: e2606, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833797

RESUMEN

Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.

16.
Front Plant Sci ; 7: 497, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200001

RESUMEN

The biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. The Populus root microbiome is a diverse community that has high abundance of ß- and γ-Proteobacteria, both classes which include multiple plant-growth promoting representatives. To understand the contribution of individual microbiome members in a community, we studied the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Both strains increased lateral root formation and root hair production in Arabidopsis plate assays and are predicted to encode for different functions related to growth and plant growth promotion in Populus hosts. Inoculation individually, with either bacterial isolate, increased root growth relative to uninoculated controls, and while root area was increased in mixed inoculation, the interaction term was insignificant indicating additive effects of root phenotype. Complementary data including photosynthetic efficiency, whole-transcriptome gene expression and GC-MS metabolite expression data in individual and mixed inoculated treatments indicate that the effects of these bacterial strains are unique and additive. These results suggest that the function of a microbiome community may be predicted from the additive functions of the individual members.

17.
Ecology ; 96(8): 2289-99, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26405753

RESUMEN

Ecosystems containing multiple nonnative plant species are common, but mechanisms promoting their co-occurrence are understudied. Plant-soil interactions contribute to the dominance of singleton species in nonnative ranges because many nonnatives experience stronger positive feedbacks relative to co-occurring natives. Plant-soil interactions could impede other nonnatives if an individual nonnative benefits from its soil community to a greater extent than its neighboring nonnatives, as is seen with natives. However, plant-soil interactions could promote nonnative co-occurrence if a nonnative accumulates beneficial soil mutualists that also assist other nonnatives. Here, we use greenhouse and field experiments to ask whether plant-soil interactions (1) promote the codominance of two common nonnative shrubs (Ligustrum sinense and Lonicera maackii) and (2) facilitate the invasion of a less-common nonnative shrub (Rhamnus davurica) in deciduous forests of the southeastern United States. In the greenhouse, we found that two of the nonnatives, L. maackii and R. davurica, performed better in soils conditioned by nonnative shrubs compared to uninvaded forest soils, which. suggests that positive feedbacks among co-occurring nonnative shrubs can promote continued invasion of a site. In both greenhouse and field experiments, we found consistent signals that the codominance of the nonnatives L. sinense and L. maackii may be at least partially explained by the increased growth of L. sinense in L. maackii soils. Overall, significant effects of plant-soil interactions on shrub performance indicate that plant-soil interactions can potentially structure the co-occurrence patterns of these nonnatives.


Asunto(s)
Ecosistema , Especies Introducidas , Ligustrum/fisiología , Lonicera/fisiología , Rhamnus/fisiología , Suelo , Tennessee
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...