Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 7(8): e07808, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34458633

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative movement disorder caused by an expanded CAG repeat in the huntingtin gene (HTT). The mutant huntingtin protein is ubiquitously expressed, but only certain brain regions are affected. The hypothalamus has emerged as an important area of pathology with selective loss of neurons expressing the neuropeptides orexin (hypocretin), oxytocin and vasopressin in human postmortem HD tissue. Hypothalamic changes in HD may have implications for early disease manifestations affecting the regulation of sleep, emotions and metabolism. The underlying mechanisms of selective vulnerability of certain neurons in HD are not fully understood, but excitotoxicity has been proposed to play a role. Further understanding of mechanisms rendering neurons sensitive to mutant huntingtin may reveal novel targets for therapeutic interventions. In the present study, we wanted to examine whether transgenic HD mice display altered sensitivity to excitotoxicity in the hypothalamus. We first assessed effects of hypothalamic injections of the excitotoxin quinolinic acid (QA) into wild-type (WT) mice. We show that neuronal populations expressing melanin-concentrating hormone (MCH) and cocaine and amphetamine-regulated transcript (CART) display a dose-dependent sensitivity to QA. In contrast, neuronal populations expressing orexin, oxytocin, vasopressin as well as tyrosine hydroxylase in the A13 area are resistant to QA-induced toxicity. We demonstrate that the R6/2 transgenic mouse model expressing a short fragment of mutant HTT displays hypothalamic neuropathology with discrete loss of the neuronal populations expressing orexin, MCH, CART, and orexin at 12 weeks of age. The BACHD mouse model expressing full-length mutant HTT does not display any hypothalamic neuropathology at 2 months of age. There was no effect of hypothalamic injections of QA on the neuronal populations expressing orexin, MCH, CART or oxytocin in neither HD mouse model. In conclusion, we find no support for a role of excitotoxicity in the loss of hypothalamic neuronal populations in HD.

2.
Annu Rev Physiol ; 83: 279-301, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33158377

RESUMEN

Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Hipotálamo/fisiología , Animales , Peso Corporal/fisiología , Metabolismo Energético/fisiología , Humanos , Neuronas/fisiología , Obesidad/fisiopatología
3.
Endocrinology ; 158(3): 652-663, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27983867

RESUMEN

In females, reproductive activity relies on proper integration of daily and environmental changes as well as cyclic sex-steroid feedback. This study sought to investigate the role of the hypothalamic Arg-Phe amide-related peptide (RFRP)-3 in the daily and seasonal control of reproductive activity in female Syrian hamsters by analyzing the RFRP system and investigating the effects of central administration of RFRP-3 at different reproductive stages. In long day-adapted sexually active female hamsters, the number of c-Fos-activated RFRP immunoreactive neurons was reduced in the afternoon of diestrus and proestrus; the latter was correlated with increased kisspeptin activity and the luteinizing hormone (LH) surge. Moreover, acute RFRP-3 administration decreased LH secretion when given midafternoon, before the LH surge, and had no effect at other time points of proestrus or diestrus. These data indicate that RFRP-3 exerts a tonic inhibition on LH secretion, which is lifted at the time of the preovulatory surge on the afternoon of proestrus. In short day-adapted sexually inactive female hamsters, Rfrp expression is strongly inhibited in a sex steroid-independent manner, and prolonged central infusion of RFRP-3 completely reactivated the reproductive axis through increased kisspeptin expression, gonadotropin and estradiol secretion, and gonadal weight. These findings reveal a critical role of RFRP-3 in the control of reproductive activity in female rodents and suggest that RFRP neurons, acting alongside kisspeptin neurons, are essential for proper synchronization of reproductive activity with the time of the day, the stage of the estrous cycle, and the seasonal changes in photoperiod.


Asunto(s)
Ciclo Estral , Mesocricetus/fisiología , Neuropéptidos/fisiología , Reproducción , Estaciones del Año , Animales , Ritmo Circadiano , Cricetinae , Femenino , Inyecciones Intraventriculares , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Fotoperiodo
4.
Artículo en Inglés | MEDLINE | ID: mdl-27199893

RESUMEN

Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24-h light/dark ratio (i.e., photoperiod), which is translated into the nocturnal production of the pineal hormone melatonin. The annual rhythm in this melatonin signal acts as a synchronizer ensuring that breeding occurs when environmental conditions favor survival of the offspring. Although specific mechanisms might vary among seasonal species, the hypothalamic RF (Arg-Phe) amide-related peptides (RFRP-1 and -3) are believed to play a critical role in the central control of seasonal reproduction and in all seasonal species investigated, the RFRP system is persistently inhibited in short photoperiod. Central chronic administration of RFRP-3 in short day-adapted male Syrian hamsters fully reactivates the reproductive axis despite photoinhibitory conditions, which highlights the importance of the seasonal changes in RFRP expression for proper regulation of the reproductive axis. The acute effects of RFRP peptides, however, depend on species and photoperiod, and recent studies point toward a different role of RFRP in regulating female reproductive activity. In this review, we summarize the recent advances made to understand the role and underlying mechanisms of RFRP in the seasonal control of reproduction, primarily focusing on mammalian species.

5.
J Comp Neurol ; 524(9): 1825-38, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26518222

RESUMEN

RF-(Arg-Phe) related peptides (RFRP-1 and -3) are considered to play a role in the seasonal regulation of reproduction; however, the effect of the peptides depends on species and gender. This study aimed at comparing the RFRP system in male and female Syrian hamsters over long and short photoperiods to investigate the neuroanatomical basis of these differential effects. The neuroanatomical distribution of RFRP neurons and fibers, revealed using an antiserum recognizing RFRP-1 and -3, as well as GPR147 mRNA, are similar in male and female Syrian hamsters. RFRP neurons are mainly found in the medial hypothalamus, whereas RFRP projections and GPR147 mRNA are observed in the preoptic area, anteroventral-periventricular nucleus, suprachiasmatic nucleus, paraventricular nucleus, bed nucleus of the stria terminalis, ventromedial hypothalamus, habenular nucleus, and arcuate nucleus. The number of RFRP neurons is higher in females than in males, and in both sexes, the number of RFRP neurons is reduced in short photoperiods. GPR147 mRNA levels are higher in females than in males and are downregulated in short photoperiods, particularly in females. Interestingly, the number of RFRP-positive fibers in the anteroventral-periventricular nucleus is higher only in females adjusted to a short photoperiod. Our results suggest that the RFRP system, which is strongly regulated by photoperiod in both male and female Syrian hamsters, is particularly important in females, with a distinct role in the anteroventral-periventricular nucleus, possibly in the regulation of the preovulatory luteinizing hormone surge via kisspeptin neurons.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Caracteres Sexuales , Análisis de Varianza , Animales , Proteínas Aviares/metabolismo , Cricetinae , Femenino , Hormonas Hipotalámicas/metabolismo , Masculino , Neuronas/metabolismo , Neuropéptidos/genética , ARN Mensajero/metabolismo , Receptores de Neuropéptido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...