Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39086170

RESUMEN

AIMS: Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC-autonomous S1P production, it is unclear if relative reductions in circulating S1P impact endothelial function. It is also unclear how EC S1PR1 insufficiency, whether induced by ligand deficiency or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS: We here fine-map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell type-specific and relative deficiencies in S1P production to define ligand source- and dose-dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries and high-endothelial venules (HEV). Similar zonation was observed for albumin extravasation in EC S1PR1 deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic EC, S1PR1 engagement was high in collecting vessels and lymph nodes and low in terminal capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signaling in lymphatics and HEV, hematopoietic cells provided ∼90% of plasma S1P and sustained signaling in resistance arteries and lung capillaries. S1PR1 signaling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age, but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSIONS: This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.

2.
Circ Res ; 135(4): 488-502, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38979610

RESUMEN

BACKGROUND: The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown. METHODS: AngII (angiotensin II) was infused in Apoe-/- to induce experimental aortic aneurysm. Mice carrying an Sm22-Cre allele were cross-bred with mice carrying a floxed Wnk1 allele to specifically investigate the functional role of Wnk1 in VSMCs. RESULTS: Single-cell RNA-sequencing of the aneurysmal abdominal aorta from AngII-infused Apoe-/- mice revealed that VSMCs that did not express Wnk1 showed lower expression of contractile phenotype markers and increased inflammatory activity. Interestingly, WNK1 gene expression in VSMCs was decreased in human abdominal aortic aneurysm. Wnk1-deficient VSMCs lost their contractile function and exhibited a proinflammatory phenotype, characterized by the production of matrix metalloproteases, as well as cytokines and chemokines, which contributed to local accumulation of inflammatory macrophages, Ly6Chi monocytes, and γδ T cells. Sm22Cre+Wnk1lox/lox mice spontaneously developed aortitis in the infrarenal abdominal aorta, which extended to the thoracic area over time without any negative effect on long-term survival. AngII infusion in Sm22Cre+Wnk1lox/lox mice aggravated the aortic disease, with the formation of lethal abdominal aortic aneurysms. Pharmacological blockade of γδ T-cell recruitment using neutralizing anti-CXCL9 (anti-CXC motif chemokine ligand 9) antibody treatment, or of monocyte/macrophage using Ki20227, a selective inhibitor of CSF1 receptor, attenuated aortitis. Wnk1 deletion in VSMCs led to aortic wall remodeling with destruction of elastin layers, increased collagen content, and enhanced local TGF-ß (transforming growth factor-beta) 1 expression. Finally, in vivo TGF-ß blockade using neutralizing anti-TGF-ß antibody promoted saccular aneurysm formation and aorta rupture in Sm22 Cre+ Wnk1lox/lox mice but not in control animals. CONCLUSION: Wnk1 is a key regulator of VSMC function. Wnk1 deletion promotes VSMC phenotype switch toward a pathogenic proinflammatory phenotype, orchestrating deleterious vascular remodeling and spontaneous severe aortitis in mice.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Aortitis , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Aortitis/genética , Aortitis/metabolismo , Aortitis/patología , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Humanos , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Ratones Endogámicos C57BL , Masculino , Células Cultivadas , Ratones Noqueados para ApoE , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Aorta Abdominal/metabolismo , Aorta Abdominal/patología
3.
Front Endocrinol (Lausanne) ; 15: 1344891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846490

RESUMEN

Introduction: Clear cell renal cell carcinoma (ccRCC) is characterized by a predominant metabolic reprogramming triggering energy production by anaerobic glycolysis at the expense of oxydative phosphorylation. Ketogenic diet (KD), which consists of high fat and low carbohydrate intake, could bring required energy substrates to healthy cells while depriving tumor cells of glucose. Our objective was to evaluate the effect of KD on renal cancer cell tumor metabolism and growth proliferation. Methods: Growth cell proliferation and mitochondrial metabolism of ACHN and Renca renal carcinoma cells were evaluated under ketone bodies (KB) exposure. In vivo studies were performed with mice (nude or Balb/c) receiving a xenograft of ACHN cells or Renca cells, respectively, and were then split into 2 feeding groups, fed either with standard diet or a 2:1 KD ad libitum. To test the effect of KD associated to immunotherapy, Balb/c mice were treated with anti-PDL1 mAb. Tumor growth was monitored. Results: In vitro, KB exposure was associated with a significant reduction of ACHN and Renca cell proliferation and viability, while increasing mitochondrial metabolism. In mice, KD was associated with tumor growth reduction and PDL-1 gene expression up-regulation. In Balb/c mice adjuvant KD was associated to a better response to anti-PDL-1 mAb treatment. Conclusion: KB reduced the renal tumor cell growth proliferation and improved mitochondrial respiration and biogenesis. KD also slowed down tumor growth of ACHN and Renca in vivo. We observed that PDL-1 was significantly overexpressed in tumor in mice under KD. Response to anti-PDL-1 mAb was improved in mice under KD. Further studies are needed to confirm the therapeutic benefit of adjuvant KD combined with immunotherapy in patients with kidney cancer.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Células Renales , Proliferación Celular , Dieta Cetogénica , Neoplasias Renales , Ratones Endogámicos BALB C , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/dietoterapia , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Humanos , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Femenino
4.
medRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562733

RESUMEN

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA