Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
NAR Genom Bioinform ; 6(1): lqae028, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482061

RESUMEN

Recent COVID-19 vaccines unleashed the potential of mRNA-based therapeutics. A common bottleneck across mRNA-based therapeutic approaches is the rapid design of mRNA sequences that are translationally efficient, long-lived and non-immunogenic. Currently, an accessible software tool to aid in the design of such high-quality mRNA is lacking. Here, we present mRNAid, an open-source platform for therapeutic mRNA optimization, design and visualization that offers a variety of optimization strategies for sequence and structural features, allowing one to customize desired properties into their mRNA sequence. We experimentally demonstrate that transcripts optimized by mRNAid have characteristics comparable with commercially available sequences. To encompass additional aspects of mRNA design, we experimentally show that incorporation of certain uridine analogs and untranslated regions can further enhance stability, boost protein output and mitigate undesired immunogenicity effects. Finally, this study provides a roadmap for rational design of therapeutic mRNA transcripts.

2.
Nat Commun ; 15(1): 489, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216578

RESUMEN

Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology. Workflow application gives peptides with >292x improved cell proliferation potencies and no off-target cell proliferation effects ( > 3800x on-target index). Application of these 'design rules' to a distinct Mdm2(X) peptide series improves ( > 150x) cellular potencies and removes off-target toxicities. The outlined workflow should facilitate therapeutic impacts, especially for those targets such as Mdm2(X) that have hydrophobic interfaces and are targetable with a helical motif.


Asunto(s)
Péptidos , Proteínas Proto-Oncogénicas c-mdm2 , Péptidos/farmacología , Péptidos/química
3.
Cell Chem Biol ; 29(11): 1601-1615.e7, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36318925

RESUMEN

Biodegraders are targeted protein degradation constructs composed of mini-proteins/peptides linked to E3 ligase receptors. We gained deeper insights into their utility by studying Con1-SPOP, a biodegrader against proliferating cell nuclear antigen (PCNA), an oncology target. Con1-SPOP proved pharmacologically superior to its stoichiometric (non-degrading) inhibitor equivalent (Con1-SPOPmut) as it had more potent anti-proliferative effects and uniquely induced DNA damage, cell apoptosis, and necrosis. Proteomics showed that PCNA degradation gave impaired mitotic division and mitochondria dysfunction, effects not seen with the stoichiometric inhibitor. We further showed that doxycycline-induced Con1-SPOP achieved complete tumor growth inhibition in vivo. Intracellular delivery of mRNA encoding Con1-SPOP via lipid nanoparticles (LNPs) depleted endogenous PCNA within hours of application with nanomolar potency. Our results demonstrate the utility of biodegraders as biological tools and highlight target degradation as a more efficacious approach versus stoichiometric inhibition. Once in vivo delivery is optimized, biodegraders may be leveraged as an exciting therapeutic modality.


Asunto(s)
Liposomas , Ubiquitina-Proteína Ligasas , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis
4.
Sci Rep ; 12(1): 14087, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982220

RESUMEN

Immune checkpoint blockade (ICB) leads to durable and complete tumour regression in some patients but in others gives temporary, partial or no response. Accordingly, significant efforts are underway to identify tumour-intrinsic mechanisms underlying ICB resistance. Results from a published CRISPR screen in a mouse model suggested that targeting STUB1, an E3 ligase involved in protein homeostasis, may overcome ICB resistance but the molecular basis of this effect remains unclear. Herein, we report an under-appreciated role of STUB1 to dampen the interferon gamma (IFNγ) response. Genetic deletion of STUB1 increased IFNGR1 abundance on the cell surface and thus enhanced the downstream IFNγ response as showed by multiple approaches including Western blotting, flow cytometry, qPCR, phospho-STAT1 assay, immunopeptidomics, proteomics, and gene expression profiling. Human prostate and breast cancer cells with STUB1 deletion were also susceptible to cytokine-induced growth inhibition. Furthermore, blockade of STUB1 protein function recapitulated the STUB1-null phenotypes. Despite these encouraging in vitro data and positive implications from clinical datasets, we did not observe in vivo benefits of inactivating Stub1 in mouse syngeneic tumour models-with or without combination with anti-PD-1 therapy. However, our findings elucidate STUB1 as a barrier to IFNγ sensing, prompting further investigations to assess if broader inactivation of human STUB1 in both tumors and immune cells could overcome ICB resistance.


Asunto(s)
Interferón gamma , Neoplasias , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Interferón gamma/metabolismo , Interferón gamma/farmacología , Espacio Intracelular/metabolismo , Masculino , Ratones , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Med Chem ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853179

RESUMEN

Recent evidence suggests that deletion of STUB1─a pivotal negative regulator of interferon-γ sensing─may potentially clear malignant cells. However, current studies rely primarily on genetic approaches, as pharmacological inhibitors of STUB1 are lacking. Identifying a tool compound will be a step toward validating the target in a broader therapeutic sense. Herein, screening more than a billion macrocyclic peptides resulted in STUB1 binders, which were further optimized by a structure-enabled in silico design. The strategy to replace the macrocyclic peptides' hydrophilic and solvent-exposed region with a hydrophobic scaffold improved cellular permeability while maintaining the binding conformation. Further substitution of the permeability-limiting terminal aspartic acid with a tetrazole bioisostere retained the binding to a certain extent while improving permeability, suggesting a path forward. Although not optimal for cellular study, the current lead provides a valuable template for further development into selective tool compounds for STUB1 to enable target validation.

6.
Front Cardiovasc Med ; 8: 668222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295927

RESUMEN

Pulmonary arterial hypertension (PAH) leads to right ventricular cardiomyopathy and cardiac dysfunctions where in the clinical setting, cardiac arrest is the likely cause of death, in ~70% of PAH patients. We investigated the cardiac phenotype of PAH hearts and tested the hypothesis that the insulin-like hormone, Relaxin could prevent maladaptive cardiac remodeling and protect against cardiac dysfunctions in a PAH animal model. PAH was induced in rats with sugen (20 mg/kg), hypoxia then normoxia (3-weeks/each); relaxin (RLX = 0, 30 or 400 µg/kg/day, n ≥ 6/group) was delivered subcutaneously (6-weeks) with implanted osmotic mini-pumps. Right ventricle (RV) hemodynamics and Doppler-flow measurements were followed by cardiac isolation, optical mapping, and arrhythmia phenotype. Sugen-hypoxia (SuHx) treated rats developed PAH characterized by higher RV systolic pressures (50 ± 19 vs. 22 ± 5 mmHg), hypertrophy, reduced stroke volume, ventricular fibrillation (VF) (n = 6/11) and bradycardia/arrest (n = 5/11); both cardiac phenotypes were suppressed with dithiothreitol (DTT = 1 mM) (n = 0/2/group) or RLX (low or high dose, n = 0/6/group). PAH hearts developed increased fibrosis that was reversed by RLX-HD, but not RLX-LD. Relaxin decreased Nrf2 and glutathione transferases but not glutathione-reductase. High-dose RLX improved pulmonary arterial compliance (measured by Doppler flow), suppressed VF even after burst-pacing, n = 2/6). Relaxin suppressed VF and asystole through electrical remodeling and by reversing thiol oxidative stress. For the first time, we showed two cardiac phenotypes in PAH animals and their prevention by RLX. Relaxin may modulate maladaptive cardiac remodeling in PAH and protect against arrhythmia and cardiac arrest.

7.
ACS Cent Sci ; 7(2): 274-291, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33655066

RESUMEN

Mutations to RAS proteins (H-, N-, and K-RAS) are among the most common oncogenic drivers, and tumors harboring these lesions are some of the most difficult to treat. Although covalent small molecules against KRASG12C have shown promising efficacy against lung cancers, traditional barriers remain for drugging the more prevalent KRASG12D and KRASG12V mutants. Targeted degradation has emerged as an attractive alternative approach, but for KRAS, identification of the required high-affinity ligands continues to be a challenge. Another significant hurdle is the discovery of a hybrid molecule that appends an E3 ligase-recruiting moiety in a manner that satisfies the precise geometries required for productive polyubiquitin transfer while maintaining favorable druglike properties. To gain insights into the advantages and feasibility of KRAS targeted degradation, we applied a protein-based degrader (biodegrader) approach. This workflow centers on the intracellular expression of a chimeric protein consisting of a high-affinity target-binding domain fused to an engineered E3 ligase adapter. A series of anti-RAS biodegraders spanning different RAS isoform/nucleotide-state specificities and leveraging different E3 ligases provided definitive evidence for RAS degradability. Further, these established that the functional consequences of KRAS degradation are context dependent. Of broader significance, using the exquisite degradation specificity that biodegraders can possess, we demonstrated how this technology can be applied to answer questions that other approaches cannot. Specifically, application of the GDP-state specific degrader uncovered the relative prevalence of the "off-state" of WT and various KRAS mutants in the cellular context. Finally, if delivery challenges can be addressed, anti-RAS biodegraders will be exciting candidates for clinical development.

8.
Chem Sci ; 12(48): 15975-15987, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35024121

RESUMEN

Macrocyclic peptides have the potential to address intracellular protein-protein interactions (PPIs) of high value therapeutic targets that have proven largely intractable to small molecules. Here, we report broadly applicable lessons for applying this modality to intracellular targets and specifically for advancing chemical matter to address KRAS, a protein that represents the most common oncogene in human lung, colorectal and pancreatic cancers yet is one of the most challenging targets in human disease. Specifically, we focused on KRpep-2d, an arginine-rich KRAS-binding peptide with a disulfide-mediated macrocyclic linkage and a protease-sensitive backbone. These latter redox and proteolytic labilities obviated cellular activity. Extensive structure-activity relationship studies involving macrocyclic linker replacement, stereochemical inversion, and backbone α-methylation, gave a peptide with on-target cellular activity. However, we uncovered an important generic insight - the arginine-dependent cell entry mechanism limited its therapeutic potential. In particular, we observed a strong correlation between net positive charge and histamine release in an ex vivo assay, thus making this series unsuitable for advancement due to the potentially fatal consequences of mast cell degranulation. This observation should signal to researchers that cationic-mediated cell entry - an approach that has yet to succeed in the clinic despite a long history of attempts - carries significant therapy-limiting safety liabilities. Nonetheless, the cell-active molecules identified here validate a unique inhibitory epitope on KRAS and thus provide valuable molecular templates for the development of therapeutics that are desperately needed to address KRAS-driven cancers - some of the most treatment-resistant human malignancies.

9.
Chem Sci ; 11(21): 5577-5591, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32874502

RESUMEN

Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable via small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability. Several contemporary peptide design strategies are aimed at addressing these issues. Strategic macrocyclization through optimally placed chemical braces such as olefinic hydrocarbon crosslinks, commonly referred to as staples, may improve peptide properties by (i) restricting conformational freedom to improve target affinities, (ii) improving proteolytic resistance, and (iii) enhancing cell permeability. As a second strategy, molecules constructed entirely from d-amino acids are hyper-resistant to proteolytic cleavage, but generally lack conformational stability and membrane permeability. Since neither approach is a complete solution, we have combined these strategies to identify the first examples of all-d α-helical stapled and stitched peptides. As a template, we used a recently reported all d-linear peptide that is a potent inhibitor of the p53-Mdm2 interaction, but is devoid of cellular activity. To design both stapled and stitched all-d-peptide analogues, we used computational modelling to predict optimal staple placement. The resultant novel macrocyclic all d-peptide was determined to exhibit increased α-helicity, improved target binding, complete proteolytic stability and, most notably, cellular activity.

10.
Med Biol Eng Comput ; 58(10): 2239-2258, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32666412

RESUMEN

Pulmonary diseases and injury lead to structural and functional changes in the lung parenchyma and airways, often resulting in measurable sound transmission changes on the chest wall surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung stiffness and other structural property changes which may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, parenchyma, and chest wall under normal and pathological conditions that create distributed structural (e.g., pneumothoraces) and diffuse material (e.g., fibrosis) changes, as well as a localized structural and material changes as may be seen with a neoplasm. Experiments were carried out in normal subjects to validate the baseline model. Sound waves with frequency content from 50 to 600 Hz were introduced into the airways of three healthy human subjects through the mouth, and transthoracic transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of a frequency-dependent decreased sound transmission due to pneumothorax were consistent with experimental measurements reported in previous work. Predictions for the case of fibrosis show that while shear wave motion is altered, changes to compression wave propagation are negligible, and thus, insonification, which primarily drives compression waves, is not ideal to detect the presence of fibrosis. Results from the numerical simulation of a tumor show an increase in the wavelength of propagating waves in the immediate vicinity of the tumor region. Graphical abstract.


Asunto(s)
Acústica , Fibrosis Pulmonar Idiopática/fisiopatología , Neoplasias Pulmonares/fisiopatología , Neumotórax/fisiopatología , Tórax/diagnóstico por imagen , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Flujometría por Láser-Doppler/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Modelos Anatómicos , Neumotórax/diagnóstico por imagen
11.
Proc Natl Acad Sci U S A ; 117(11): 5791-5800, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123106

RESUMEN

Targeted degradation approaches such as proteolysis targeting chimeras (PROTACs) offer new ways to address disease through tackling challenging targets and with greater potency, efficacy, and specificity over traditional approaches. However, identification of high-affinity ligands to serve as PROTAC starting points remains challenging. As a complementary approach, we describe a class of molecules termed biological PROTACs (bioPROTACs)-engineered intracellular proteins consisting of a target-binding domain directly fused to an E3 ubiquitin ligase. Using GFP-tagged proteins as model substrates, we show that there is considerable flexibility in both the choice of substrate binders (binding positions, scaffold-class) and the E3 ligases. We then identified a highly effective bioPROTAC against an oncology target, proliferating cell nuclear antigen (PCNA) to elicit rapid and robust PCNA degradation and associated effects on DNA synthesis and cell cycle progression. Overall, bioPROTACs are powerful tools for interrogating degradation approaches, target biology, and potentially for making therapeutic impacts.


Asunto(s)
Antígeno Nuclear de Célula en Proliferación/metabolismo , Ingeniería de Proteínas/métodos , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Sitios de Unión , Células HEK293 , Humanos , Terapia Molecular Dirigida/métodos , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
12.
Sci Rep ; 9(1): 18545, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811156

RESUMEN

Healthy aging results in cardiac structural and electrical remodeling that increases susceptibility to cardiovascular diseases. Relaxin, an insulin-like hormone, suppresses atrial fibrillation, inflammation and fibrosis in aged rats but the mechanisms-of-action are unknown. Here we show that relaxin treatment of aged rats reverses pathological electrical remodeling (increasing Nav1.5 expression and localization of Connexin43 to intercalated disks) by activating canonical Wnt signaling. In isolated adult ventricular myocytes, relaxin upregulated Nav1.5 (EC50 = 1.3 nM) by a mechanism inhibited by the addition of Dickkopf-1. Furthermore, relaxin increased the levels of connexin43, Wnt1, and cytosolic and nuclear ß-catenin. Treatment with Wnt1 or CHIR-99021 (a GSK3ß inhibitor) mimicked the relaxin effects. In isolated fibroblasts, relaxin blocked TGFß-induced collagen elevation in a Wnt dependent manner. These findings demonstrate a close interplay between relaxin and Wnt-signaling resulting in myocardial remodeling and reveals a fundamental mechanism of great therapeutic potential.


Asunto(s)
Fibrilación Atrial/patología , Envejecimiento Saludable/patología , Miocardio/patología , Relaxina/metabolismo , Remodelación Ventricular/fisiología , Adulto , Factores de Edad , Anciano , Animales , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/prevención & control , Células Cultivadas , Fibroblastos , Fibrosis , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Preparación de Corazón Aislado , Masculino , Miocardio/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Cultivo Primario de Células , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Relaxina/administración & dosificación , Remodelación Ventricular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología , Proteína Wnt1/administración & dosificación , Proteína Wnt1/metabolismo
13.
J Acoust Soc Am ; 143(3): 1297, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29604685

RESUMEN

In a recent publication by Henry and Royston [J. Acoust. Soc. Am. 142, 1774-1783 (2017)], an algorithm was introduced to calculate the acoustic response to externally introduced and endogenous respiratory sounds within a realistic, patient-specific subglottal airway tree. This work is extended using an efficient numerical boundary element (BE) approach to calculate the resulting radiated sound field from the airway tree into the lung parenchyma taking into account the surrounding chest wall. Within the BE model of the left lung parenchyma, comprised of more than 6000 triangular surface elements, more than 30 000 monopoles are used to approximate complex airway-originated acoustic sources. The chest wall is modeled as a boundary condition on the parenchymal surface. Several cases were simulated, including a bronchoconstricted lung that had an internal acoustic source introduced in a bronchiole, approximating a wheeze. An acoustic source localization algorithm coupled to the BE model estimated the wheeze source location to within a few millimeters based solely on the acoustic field at the surface. Improved noninvasive means of locating adventitious respiratory sounds may enhance an understanding of acoustic changes correlated to pathology, and potentially provide improved noninvasive tools for the diagnosis of pulmonary diseases that uniquely alter acoustics.


Asunto(s)
Ruidos Respiratorios/fisiopatología , Humanos , Pulmón/fisiología , Modelos Biológicos , Sonido , Espectrografía del Sonido/métodos
15.
J Acoust Soc Am ; 142(4): 1774, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29092575

RESUMEN

Sound transmission and resulting airway wall vibration in a complex multiscale viscoelastic model of the subglottal bronchial tree was calculated using a modified one-dimensional (1D) branching acoustic waveguide approach. This is an extension of previous work to enable use of complex airway trees that are partially derived from subject-specific medical images, without the need for self-similarity in the geometric structure. The approach was validated numerically for simplified airway geometries, as well as experimentally by comparison to previous studies. A comprehensive conducting airway tree with about 60 000 branches was then modified to create fibrotic, bronchoconstrictive, and pulmonary infiltrate conditions. The fibrotic case-systemic increase in soft tissue stiffness-increased the Helmholtz resonance frequency due to the increased acoustic impedance. Bronchoconstriction, with geometric changes in small conducting airways, decreased acoustic energy transmission to the peripheral airways due in part to the increased impedance mismatch between airway orders. Pulmonary infiltrate significantly altered the local acoustic field in the affected lobe. Calculation of acoustic differences between healthy versus pathologic cases can be used to enhance the understanding of vibro-acoustic changes correlated to pathology, and potentially provide improved tools for the diagnosis of pulmonary diseases that uniquely alter the acoustics of the airways.


Asunto(s)
Acústica , Síndrome Torácico Agudo/fisiopatología , Bronquios/fisiopatología , Broncoconstricción , Enfermedades Pulmonares Obstructivas/fisiopatología , Modelos Anatómicos , Modelos Teóricos , Fibrosis Pulmonar/fisiopatología , Sonido , Síndrome Torácico Agudo/diagnóstico por imagen , Síndrome Torácico Agudo/patología , Bronquios/diagnóstico por imagen , Bronquios/patología , Estudios de Casos y Controles , Simulación por Computador , Elasticidad , Humanos , Enfermedades Pulmonares Obstructivas/diagnóstico por imagen , Enfermedades Pulmonares Obstructivas/patología , Movimiento (Física) , Análisis Numérico Asistido por Computador , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/patología , Reproducibilidad de los Resultados , Factores de Tiempo , Vibración , Viscosidad
16.
Neurosignals ; 25(1): 88-97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131010

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a severe and common autoimmune disorder of the central nervous system. Despite the availability of several novel treatment options, the disease is still poorly controlled, since the pathophysiological mechanisms are not fully understood. METHODS: We tested the role of the acid sphingomyelinase/ceramide system in a model of MS, i.e. experimental autoimmune encephalomyelitis (EAE). Mice were immunized with myelin-oligodendrocyte glycoprotein and the development of the disease was analyzed by histology, immunological tests and clinical assessment in wildtype and acid sphingomyelinase (Asm)-deficient mice. RESULTS: Genetic deficiency of acid sphingomyelinase (Asm) protected against clinical symptoms in EAE and markedly attenuated the characteristic detrimental neuroinflammatory response. T lymphocyte adhesion, integrity of tight junctions, blood-brain barrier disruption and subsequent intracerebral infiltration of inflammatory cells were blocked in Asm-deficient mice after immunization. This resulted in an almost complete block of the development of disease symptoms in these mice, while wildtype mice showed severe neurological symptoms typical for EAE. CONCLUSION: Activation of the Asm/ceramide system is a central step for the development of EAE. Our findings may serve to identify novel therapeutic strategies for MS patients.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Linfocitos/metabolismo , Esfingomielina Fosfodiesterasa/genética , Uniones Estrechas/fisiología , Animales , Barrera Hematoencefálica/metabolismo , Adhesión Celular/fisiología , Proliferación Celular/fisiología , Ceramidas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito , Esfingomielina Fosfodiesterasa/metabolismo
17.
Cell Host Microbe ; 21(6): 707-718.e8, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28552668

RESUMEN

Chronic pulmonary colonization with bacterial pathogens, particularly Pseudomonas aeruginosa, is the primary cause of morbidity and mortality in patients with cystic fibrosis (CF). We observed that ß1-integrins accumulate on the luminal membrane of upper-airway epithelial cells from mice and humans with CF. ß1-integrin accumulation is due to increased ceramide and the formation of ceramide platforms that trap ß1-integrins on the luminal pole of bronchial epithelial cells. ß1-integrins downregulate acid ceramidase expression, resulting in further accumulation of ceramide and consequent reduction of surface sphingosine, a lipid that kills bacteria. Interrupting this vicious cycle by triggering surface ß1-integrin internalization via anti-ß1-integrin antibodies or the RGD peptide ligand-or by genetic or pharmacological correction of ceramide levels-normalizes ß1-integrin distribution and sphingosine levels in CF epithelial cells and prevents P. aeruginosa infection in CF mice. These findings suggest a therapeutic avenue to ameliorate CF-associated bacterial infections.


Asunto(s)
Infecciones Bacterianas/complicaciones , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Integrina beta1/metabolismo , Esfingosina/metabolismo , Ceramidasa Ácida/metabolismo , Animales , Membrana Celular/metabolismo , Ceramidas/metabolismo , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Femenino , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Masculino , Ratones , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/patogenicidad , Esfingosina/farmacología
18.
Rev Cardiovasc Med ; 17(1-2): 40-48, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27667379

RESUMEN

Dabigatran was the first direct-acting oral anticoagulant approved by the US Food and Drug Administration for prevention of stroke and systemic embolism in people with atrial fibrillation, based on data from the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial. Over 18,000 patients with nonvalvular atrial fibrillation and a moderate-to-high risk of thromboembolic stroke were randomized to warfarin or dabigatran. With respect to the primary endpoints for efficacy and safety, dabigatran was superior to warfarin in the prevention of stroke and thromboembolism and noninferior with respect to major bleeding. Although unified by a common arrhythmia and a similar thromboembolic stroke risk, this large patient population is also significantly heterogeneous with respect to other demographics and comorbidities that raise important questions about the efficacy and safety of dabigatran in specific patient populations. Furthermore, there were significant differences between the warfarin and dabigatran groups with respect to several important secondary endpoints. Understanding the differences in outcomes between specific patient subgroups from the RE-LY trial can better inform the practicing clinician's ability to offer the best anticoagulation options to individual patients.


Asunto(s)
Anticoagulantes/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Dabigatrán/uso terapéutico , Accidente Cerebrovascular/prevención & control , Tromboembolia/prevención & control , Adulto , Anciano , Anticoagulantes/administración & dosificación , Dabigatrán/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Hemorragia/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Warfarina/administración & dosificación , Warfarina/uso terapéutico
19.
PLoS One ; 11(6): e0156805, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27309348

RESUMEN

BACKGROUND: Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. METHODOLOGY: Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). PRINCIPAL FINDINGS: Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. CONCLUSIONS: These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics.


Asunto(s)
Capsaicina/efectos adversos , Cerebelo/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Hiperalgesia/diagnóstico por imagen , Dolor/diagnóstico por imagen , Corteza Somatosensorial/diagnóstico por imagen , Animales , Cerebelo/efectos de los fármacos , Cerebelo/fisiopatología , Femenino , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiopatología , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiopatología , Calor , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Inyecciones Subcutáneas , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Dolor/inducido químicamente , Dolor/fisiopatología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/fisiopatología , Cola (estructura animal) , Sensación Térmica/fisiología
20.
J Intensive Care Med ; 31(1): 72-3, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25005700
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...