Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 92020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31939737

RESUMEN

The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the Drosophila visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.


In the brain, large numbers of different types of neurons connect with each other to form complex networks. In recent years, researchers have made great progress in mapping all the connections between these cells, creating 'wiring diagrams' known as connectomes. However, charting the connections between neurons does not give all the answers as to how the brain works; for example, it does not necessarily reveal the nature of the information two connected cells exchange. Assessing which genes are switched on in different neurons can give insight into neuronal properties that are not obvious from physical connections alone. To fill that knowledge gap, Davis, Nern et al. aimed to measure the genes expressed in a well-characterized network of neurons in the fruit fly visual system. First, 100 fly strains were established, each carrying a single type of neuron colored with a fluorescent marker. Then, a biochemical approach was developed to extract the part of the cell that contains the genetic code from the neurons with the marker. Finally, a statistical tool was used to assess which genes were on in each type of neurons. This led to the creation of a database that shows whether 15,000 genes in each neuron type across 100 fly strains were switched on. Combining this information with previous knowledge about the flies' visual system revealed new information: for example, it helped to understand which chemicals the neurons use to communicate, and whether certain cells activate or inhibit each other. The work by Davis, Nern et al. demonstrates how genetic approaches can complement other methods, and it offers a new tool for other scientists to use in their work. With more advanced genetic methods, it may one day become possible to better grasp how complex brains in other organisms are organized, and how they are disrupted in disease.


Asunto(s)
Conectoma , Genoma , Neuronas/fisiología , Animales , Drosophila/genética , Drosophila/fisiología , Expresión Génica , Probabilidad , Transcriptoma , Vías Visuales/metabolismo
2.
Elife ; 5: e11613, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26949250

RESUMEN

Rod and cone photoreceptors are highly similar in many respects but they have important functional and molecular differences. Here, we investigate genome-wide patterns of DNA methylation and chromatin accessibility in mouse rods and cones and correlate differences in these features with gene expression, histone marks, transcription factor binding, and DNA sequence motifs. Loss of NR2E3 in rods shifts their epigenomes to a more cone-like state. The data further reveal wide differences in DNA methylation between retinal photoreceptors and brain neurons. Surprisingly, we also find a substantial fraction of DNA hypo-methylated regions in adult rods that are not in active chromatin. Many of these regions exhibit hallmarks of regulatory regions that were active earlier in neuronal development, suggesting that these regions could remain undermethylated due to the highly compact chromatin in mature rods. This work defines the epigenomic landscapes of rods and cones, revealing features relevant to photoreceptor development and function.


Asunto(s)
Epigénesis Genética , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , ADN/metabolismo , Perfilación de la Expresión Génica , Histonas/metabolismo , Metilación , Ratones , Factores de Transcripción/metabolismo
3.
Neuron ; 86(6): 1369-84, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26087164

RESUMEN

Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically defined cell types in a mammal. We combine this technique with next-generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both past and present gene expression, with DNA hyper-methylation at developmentally critical genes appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link the functional and transcriptional complexity of neurons to their underlying epigenomic diversity.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neocórtex/citología , Neuronas/clasificación , Neuronas/metabolismo , Animales , Nucléolo Celular/metabolismo , Inmunoprecipitación de Cromatina , Metilación de ADN/fisiología , Epigenómica/métodos , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
4.
Nat Methods ; 12(6): 568-76, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915120

RESUMEN

We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.


Asunto(s)
Proteínas Luminiscentes/química , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Animales , Antígenos , Mapeo Encefálico , Drosophila , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas , Conformación Proteica
5.
Nucleic Acids Res ; 40(19): 9691-704, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22855560

RESUMEN

Many tools are available to analyse genomes but are often challenging to use in a cell type-specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030-1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type-specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.


Asunto(s)
Drosophila/genética , Genómica/métodos , Neuronas/metabolismo , Animales , Fraccionamiento Celular/métodos , Núcleo Celular/genética , Cromatina/metabolismo , Drosophila/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Proteínas Luminiscentes/genética , Factores de Transcripción/genética
6.
Curr Opin Neurobiol ; 13(5): 570-6, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14630220

RESUMEN

The impact of microarray studies on neurobiology has been limited because, with the exception of a few outstanding papers, most reports provide little more than lists of genes, often leaving the reader at a loss to understand which and how many of the identified transcripts will be true positives with significant biological impact. However, some recent papers have offered considerable biological insight by providing independent in vivo confirmation of the roles of candidate genes, offering a glimpse of the potential power of microarrays in neurobiological research.


Asunto(s)
Encéfalo/fisiología , Perfilación de la Expresión Génica/métodos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...