Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Science ; 304(5677): 1644-7, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15192221

RESUMEN

Cells regulate the biophysical properties of their membranes by coordinated synthesis of different classes of lipids. Here, we identified a highly dynamic feedback mechanism by which the budding yeast Saccharomyces cerevisiae can regulate phospholipid biosynthesis. Phosphatidic acid on the endoplasmic reticulum directly bound to the soluble transcriptional repressor Opi1p to maintain it as inactive outside the nucleus. After the addition of the lipid precursor inositol, this phosphatidic acid was rapidly consumed, releasing Opi1p from the endoplasmic reticulum and allowing its nuclear translocation and repression of target genes. Thus, phosphatidic acid appears to be both an essential ubiquitous metabolic intermediate and a signaling lipid.


Asunto(s)
Inositol/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolípidos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Células COS , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citidina Difosfato Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Liposomas/metabolismo , Mutación , Membrana Nuclear/metabolismo , Fosfatidilinositoles/metabolismo , Fosfolípidos/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
3.
Neuropharmacology ; 43(8): 1199-209, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12527469

RESUMEN

Phencyclidine (PCP), a non-competitive antagonist of ionotropic N-methyl-D-aspartate (NMDA) receptors, produces psychotomimetic effects, such as a disruption in prepulse inhibition (PPI) of the startle response. NMDA antagonists also induce locomotor hyperactivity in rodents. We hypothesized that, like NMDA receptors, metabotropic glutamate receptors (mGluRs) modulate PPI and locomotor activity either alone or, in the case of mGluR5, via interaction with NMDA receptors. Rats treated with the mGluR5 antagonist MPEP (2-methyl-6-phenylethynylpyridine) or the mGluR2/3 agonist LY314582, either alone or in combination with PCP, were tested in PPI and locomotor activity paradigms. Neither MPEP nor LY314582 altered PPI. MPEP, but not LY314582, potentiated the PPI-disruptive effects of PCP. MPEP alone did not alter locomotor or exploratory behavior, but augmented the complex, time-dependent locomotor-stimulating effects of PCP. LY314582 dose-dependently decreased locomotor activity and exploratory holepokes. LY314582 did not alter the PCP-induced increases in locomotor activity, but further decreased the number of holepokes. The effects of MPEP on the response to PCP may reflect the cooperation and co-localization of NMDA and mGlu5 receptors.


Asunto(s)
Compuestos Bicíclicos con Puentes/farmacología , Actividad Motora/efectos de los fármacos , Fenciclidina/farmacología , Piridinas/farmacología , Reflejo de Sobresalto/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Actividad Motora/fisiología , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/fisiología , Reflejo de Sobresalto/fisiología
4.
Mol Cell Biol ; 21(17): 5710-22, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11486011

RESUMEN

Mutations in the Saccharomyces cerevisiae SNF1 gene affect a number of cellular processes, including the expression of genes involved in carbon source utilization and phospholipid biosynthesis. To identify targets of the Snf1 kinase that modulate expression of INO1, a gene required for an early, rate-limiting step in phospholipid biosynthesis, we performed a genetic selection for suppressors of the inositol auxotrophy of snf1Delta strains. We identified mutations in ACC1 and FAS1, two genes important for fatty acid biosynthesis in yeast; ACC1 encodes acetyl coenzyme A carboxylase (Acc1), and FAS1 encodes the beta subunit of fatty acid synthase. Acc1 was shown previously to be phosphorylated and inactivated by Snf1. Here we show that snf1Delta strains with increased Acc1 activity exhibit decreased INO1 transcription. Strains carrying the ACC1 suppressor mutation have reduced Acc1 activity in vitro and in vivo, as revealed by enzymatic assays and increased sensitivity to the Acc1-specific inhibitor soraphen A. Moreover, a reduction in Acc1 activity, caused by addition of soraphen A, provision of exogenous fatty acid, or conditional expression of ACC1, suppresses the inositol auxotrophy of snf1Delta strains. Together, these findings indicate that the inositol auxotrophy of snf1Delta strains arises in part from elevated Acc1 activity and that a reduction in this activity restores INO1 expression in these strains. These results reveal a Snf1-dependent connection between fatty acid production and phospholipid biosynthesis, identify Acc1 as a Snf1 target important for INO1 transcription, and suggest models in which metabolites that are generated or utilized during fatty acid biosynthesis can significantly influence gene expression in yeast.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Proteínas Portadoras , Proteínas Fúngicas/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Mio-Inositol-1-Fosfato Sintasa/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/genética , Proteínas Fúngicas/genética , Inositol/metabolismo , Fenotipo , Fosfolípidos/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae , Factores de Transcripción/genética , Transcripción Genética
5.
J Biol Chem ; 276(32): 29915-23, 2001 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-11395523

RESUMEN

Opi1p is a negative regulator of expression of phospholipid-synthesizing enzymes in the yeast Saccharomyces cerevisiae. In this work, we examined the phosphorylation of Opi1p by protein kinase C. Using a purified maltose-binding protein-Opi1p fusion protein as a substrate, protein kinase C activity was time- and dose-dependent, and dependent on the concentrations of Opi1p and ATP. Protein kinase C phosphorylated Opi1p on a serine residue. The Opi1p synthetic peptide GVLKQSCRQK, which contained a protein kinase C sequence motif at Ser(26), was a substrate for protein kinase C. Phosphorylation of a purified S26A mutant maltose-binding protein-Opi1p fusion protein by the kinase was reduced when compared with the wild-type protein. A major phosphopeptide present in purified wild-type Opi1p was absent from the purified S26A mutant protein. In vivo labeling experiments showed that the phosphorylation of Opi1p was physiologically relevant, and that the extent of phosphorylation of the S26A mutant protein was reduced by 50% when compared with the wild-type protein. The physiological consequence of the phosphorylation of Opi1p at Ser(26) was examined by measuring the effect of the S26A mutation on the expression of the phospholipid synthesis gene INO1. The beta-galactosidase activity driven by an INO1-CYC-lacI'Z reporter gene in opi1Delta mutant cells expressing the S26A mutant Opi1p was about 50% lower than that of cells expressing the wild-type Opi1p protein. These data supported the conclusion that phosphorylation of Opi1p at Ser(26) mediated the attenuation of the negative regulatory function of Opi1p on the expression of the INO1 gene.


Asunto(s)
Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Epítopos/química , Genes Reporteros , Maltosa/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Péptidos/química , Péptidos/metabolismo , Fosfolípidos/metabolismo , Fosforilación , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/enzimología , Serina/química , Factores de Tiempo , Transcripción Genética , beta-Galactosidasa/metabolismo
7.
J Biol Chem ; 275(19): 14095-101, 2000 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-10799484

RESUMEN

The N-methylation of phosphoethanolamine is the committing step in choline biogenesis in plants and is catalyzed by S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferase (PEAMT, EC ). A spinach PEAMT cDNA was isolated by functional complementation of a Schizosaccharomyces pombe cho2(-) mutant and was shown to encode a protein with PEAMT activity and without ethanolamine- or phosphatidylethanolamine N-methyltransferase activity. The PEAMT cDNA specifies a 494-residue polypeptide comprising two similar, tandem methyltransferase domains, implying that PEAMT arose by gene duplication and fusion. Data base searches suggested that PEAMTs with the same tandem structure are widespread among flowering plants. Size exclusion chromatography of the recombinant enzyme indicates that it exists as a monomer. PEAMT catalyzes not only the first N-methylation of phosphoethanolamine but also the two subsequent N-methylations, yielding phosphocholine. Monomethyl- and dimethylphosphoethanolamine are detected as reaction intermediates. A truncated PEAMT lacking the C-terminal methyltransferase domain catalyzes only the first methylation. Phosphocholine inhibits both the wild type and the truncated enzyme, although the latter is less sensitive. Salinization of spinach plants increases PEAMT mRNA abundance and enzyme activity in leaves by about 10-fold, consistent with the high demand in stressed plants for choline to support glycine betaine synthesis.


Asunto(s)
Metiltransferasas/genética , Schizosaccharomyces/genética , Spinacia oleracea/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Clonación Molecular , ADN Complementario , Prueba de Complementación Genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sales (Química) , Homología de Secuencia de Aminoácido , Spinacia oleracea/enzimología
8.
Genetics ; 154(4): 1485-95, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10747047

RESUMEN

The ino2Delta, ino4Delta, opi1Delta, and sin3Delta mutations all affect expression of INO1, a structural gene for inositol-1-phosphate synthase. These same mutations affect other genes of phospholipid biosynthesis that, like INO1, contain the repeated element UAS(INO) (consensus 5' CATGTGAAAT 3'). In this study, we evaluated the effects of these four mutations, singly and in all possible combinations, on growth and expression of INO1. All strains carrying an ino2Delta or ino4Delta mutation, or both, failed to grow in medium lacking inositol. However, when grown in liquid culture in medium containing limiting amounts of inositol, the opi1Delta ino4Delta strain exhibited a level of INO1 expression comparable to, or higher than, the wild-type strain growing under the same conditions. Furthermore, INO1 expression in the opi1Delta ino4Delta strain was repressed in cells grown in medium fully supplemented with both inositol and choline. Similar results were obtained using the opi1Delta ino2Delta ino4Delta strain. Regulation of INO1 was also observed in the absence of the SIN3 gene product. Therefore, while Opi1p, Sin3p, and the Ino2p/Ino4p complex all affect the overall level of INO1 expression in an antagonistic manner, they do not appear to be responsible for transmitting the signal that leads to repression of INO1 in response to inositol. Various models for Opi1p function were tested and no evidence for binding of Opi1p to UAS(INO), or to Ino2p or Ino4p, was obtained.


Asunto(s)
Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica/genética , Genes Reguladores , Inositol/farmacología , Mio-Inositol-1-Fosfato Sintasa/genética , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Mutación , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
9.
Genetics ; 152(1): 89-100, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10224245

RESUMEN

A search was conducted for suppressors of the inositol auxotrophic phenotype of the ino4-8 mutant of yeast. The ino4-8 mutation is a single base pair change that results in substitution of lysine for glutamic acid at position 79 in the bHLH domain of the yeast regulatory protein, Ino4p. Ino4p dimerizes with a second bHLH protein, Ino2p, to form a complex that binds to the promoter of the INO1 gene, activating transcription. Of 31 recessive suppressors of ino4-8 isolated, 29 proved to be alleles of a single locus, identified as REG1, which encodes a regulatory subunit of a protein phosphatase involved in the glucose response pathway. The suppressor mutation, sia1-1, identified as an allele of REG1, caused constitutive INO1 expression and was capable of suppressing the inositol auxotrophy of a second ino4 missense mutant, ino4-26, as well as ino2-419, a missense mutation of INO2. The suppressors analyzed were unable to suppress ino2 and ino4 null mutations, but the reg1 deletion mutation could suppress ino4-8. A deletion mutation in the OPI1 negative regulator was incapable of suppressing ino4-8. The relative roles of the OPI1 and REG1 gene products in control of INO1 expression are discussed.


Asunto(s)
Proteínas Fúngicas/fisiología , Mio-Inositol-1-Fosfato Sintasa/fisiología , Fosfoproteínas Fosfatasas , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Transactivadores , Factores de Transcripción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Northern Blotting , División Celular , Proteínas de Unión al ADN , Diploidia , Expresión Génica , Genes Reporteros , Genotipo , Mutagénesis , Mutación Missense , Fenotipo , Mutación Puntual , Proteína Fosfatasa 1 , Saccharomyces cerevisiae/genética , Supresión Genética , Factores de Tiempo , beta-Galactosidasa/metabolismo
10.
Nucleic Acids Res ; 27(9): 2043-50, 1999 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10198439

RESUMEN

The INO1 gene of yeast is expressed in logarithmically growing, wild-type cells when inositol is absent from the medium. However, the INO1 gene is repressed when inositol is present during logarithmic growth and it is also repressed as cells enter stationary phase whether inositol is present or not. In this report, we demonstrate that transient nitrogen limitation also causes INO1 repression. The repression of INO1 in response to nitrogen limitation shares many features in common with repression in response to the presence of inositol. Specifically, the response to nitrogen limitation is dependent upon the presence of a functional OPI1 gene product, it requires ongoing phosphatidylcholine biosynthesis and it is mediated by the repeated element, UASINO, found in the promoter of INO1 and other co-regulated genes of phospholipid biosynthesis. Thus, we propose that repression of INO1 in response to inositol and in response to nitrogen limitation occurs via a common mechanism that is sensitive to the status of ongoing phospholipid metabolism.


Asunto(s)
Genes Fúngicos , Inositol/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Fosfatidilcolinas/biosíntesis , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo
11.
Prog Lipid Res ; 38(5-6): 361-99, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10793889

RESUMEN

In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.


Asunto(s)
Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Carboxiliasas/metabolismo , Colina Quinasa/metabolismo , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Citidina Difosfato Colina/metabolismo , Citidina Difosfato Diglicéridos/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Etanolaminas/metabolismo , Metiltransferasas/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Fosfatidiletanolamina N-Metiltransferasa , Fosfatidilserinas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
12.
Genetics ; 150(2): 553-62, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9755189

RESUMEN

The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Delta) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.


Asunto(s)
Genes Fúngicos/genética , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Colina/metabolismo , Mapeo Cromosómico , Clonación Molecular , Prueba de Complementación Genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fosfatidil-N-Metiletanolamina N-Metiltransferasa , Fosfatidilcolinas/biosíntesis , Fosfatidiletanolamina N-Metiltransferasa , Ratas , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe , Análisis de Secuencia de ADN
13.
Artículo en Inglés | MEDLINE | ID: mdl-9752720

RESUMEN

Baker's yeast, Saccharomyces cerevisiae, is an excellent and an increasingly important model for the study of fundamental questions in eukaryotic cell biology and genetic regulation. The fission yeast, Schizosaccharomyces pombe, although not as intensively studied as S. cerevisiae, also has many advantages as a model system. In this review, we discuss progress over the past several decades in biochemical and molecular genetic studies of the regulation of phospholipid metabolism in these two organisms and higher eukaryotes. In S. cerevisiae, following the recent completion of the yeast genome project, a very high percentage of the gene-enzyme relationships in phospholipid metabolism have been assigned and the remaining assignments are expected to be completed rapidly. Complex transcriptional regulation, sensitive to the availability of phospholipid precusors, as well as growth phase, coordinates the expression of the structural genes encoding these enzymes in S. cerevisiae. In this article, this regulation is described, the mechanism by which the cell senses the ongoing metabolic activity in the pathways for phospholipid biosynthesis is discussed, and a model is presented. Recent information relating to the role of phosphatidylcholine turnover in S. cerevisiae and its relationship to the secretory pathway, as well as to the regulation of phospholipid metabolism, is also presented. Similarities in the role of phospholipase D-mediated phosphatidylcholine turnover in the secretory process in yeast and mammals lend further credence to yeast as a model system.


Asunto(s)
Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fosfolípidos/biosíntesis , Fosfolípidos/genética , Schizosaccharomyces/genética
14.
Genetics ; 149(4): 1707-15, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9691030

RESUMEN

Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git-) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git- phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


Asunto(s)
Genes Fúngicos , Fosfatos de Inositol/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Bases , Transporte Biológico Activo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , ADN de Hongos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Proteínas de Transporte de Membrana , Mutación , Sistemas de Lectura Abierta , Fenotipo , Factores de Transcripción/genética
15.
J Biol Chem ; 273(27): 16635-8, 1998 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-9642212

RESUMEN

The SEC14 gene encodes a phosphatidylinositol/phosphatidylcholine transfer protein essential for secretion and growth in yeast (1). Mutations (cki1, cct1, and cpt1) in the CDP-choline pathway for phosphatidylcholine synthesis suppress the sec14 growth defect (2), permitting sec14(ts) cki1, sec14(ts) cct1, and sec14(ts) cpt1 strains to grow at the sec14(ts) restrictive temperature. Previously, we reported that these double mutant strains also excrete the phospholipid metabolites, choline and inositol (3). We now report that these choline and inositol excretion phenotypes are eliminated when the SPO14 (PLD1) gene encoding phospholipase D1 is deleted. In contrast to sec14(ts) cki1 strains, sec14(ts) cki1 pld1 strains are not viable at the sec14(ts) restrictive temperature and exhibit a pattern of invertase secretion comparable with sec14(ts) strains. Thus, the PLD1 gene product appears to play an essential role in the suppression of the sec14(ts) defect by CDP-choline pathway mutations, indicating a role for phospholipase D1 in growth and secretion. Furthermore, sec14(ts) strains exhibit elevated Ca2+-independent, phophatidylinositol 4,5-bisphosphate-stimulated phospholipase D activity. We also propose that phospholipase D1-mediated phosphatidylcholine turnover generates a signal that activates transcription of INO1, the structural gene for inositol 1-phosphate synthase.


Asunto(s)
Lípidos de la Membrana/biosíntesis , Fosfolipasa D/metabolismo , Saccharomyces cerevisiae/metabolismo , Citidina Difosfato Colina/metabolismo , Lípidos de la Membrana/metabolismo , Fenotipo , Fosfatidilcolinas/metabolismo , Fosfolipasa D/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
16.
Qual Manag Health Care ; 6(4): 29-36, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10339042

RESUMEN

This article describes the use of rapid cycle improvement in a community hospital adult cardiac surgery program. The hospital participated in the Breakthrough Series: collaborative adult cardiac surgery sponsored by the Institute of Healthcare Improvement (IHI). As a result of this 1-year project, median length of stay for diagnosis-related groups 104 throug 108 was decreased 30 percent from 8.62 days to 6.0 days; percentage of patients extubated within 6 hours postoperatively rose from 5 percent to 75 percent; median cost per case declined $19 percent; and pain and anxiety, service, and satisfaction scores all improved. There was no adverse impact on the clinical indicators 30-day readmission rate, reintubation, return to operating room, and mortality.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/normas , Servicio de Cirugía en Hospital/normas , Gestión de la Calidad Total/métodos , Adulto , Protocolos Clínicos , Ahorro de Costo , Hospitales Comunitarios/normas , Humanos , Tiempo de Internación , Minnesota , Quirófanos/economía , Dolor Postoperatorio/terapia , Grupo de Atención al Paciente , Satisfacción del Paciente
17.
Biochim Biophys Acta ; 1348(1-2): 134-41, 1997 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-9370325

RESUMEN

In fungal microorganisms including fission yeast, Schizosaccharomyces pombe and baker's yeast, Saccharomyces cerevisiae, two enzymes are required to catalyze the synthesis of phosphatidylcholine (PC) from phosphatidylethanolamine (PE). The genes encoding the class I and class II phospholipid N-methyltransferases (PLMTs) have been cloned from both yeasts. The class II PLMTs catalyze the first methylation step from PE to phosphatidyl-monomethylethanolamine (PMME). Representatives of the class II type enzymes have been isolated only from yeast and the amino acid sequence of these enzymes contain regions of internal duplication. The class I PLMTs catalyze the last two methylation steps from PMME to PC. The class I PLMTs from both yeasts are homologous to the products of the phosphatidylethanolamine methyltransferase (PEMT) genes isolated from mouse and rat (described in the article by Vance et al. in this volume). Like the mammalian PEMT gene products, the S. cerevisiae class I enzyme can catalyze all three methylation steps to PC biosynthesis. S. cerevisiae strains, in which either the class II or class I enzyme is deleted, grow slowly in the absence of choline and exhibit low levels of PC. However, in S. pombe, mutants lacking either one of the two PLMTs are choline auxotrophs. Thus, both enzymes are required in S. pombe for maximal growth in the absence of exogenous choline. The S. cerevisiae methyltransferase genes are regulated at the level of transcription in response to the soluble precursors, inositol and choline as well as to growth phase. The mechanism of regulation of the S. pombe methyltransferases is not yet understood but appears to occur post-transcriptionally in response to choline availability. In addition, the S. pombe PLMT genes are regulated transcriptionally in response to growth phase.


Asunto(s)
Metiltransferasas/metabolismo , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Metiltransferasas/química , Metiltransferasas/genética , Datos de Secuencia Molecular , Neurospora crassa/enzimología , Fosfatidiletanolamina N-Metiltransferasa , Conformación Proteica , Homología de Secuencia de Aminoácido
18.
Biochim Biophys Acta ; 1348(1-2): 245-56, 1997 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-9370339

RESUMEN

1L-myo-Inositol-1-phosphate synthase catalyzes the conversion of D-glucose 6-phosphate to 1L-myo-inositol-1-phosphate, the first committed step in the production of all inositol-containing compounds, including phospholipids, either directly or by salvage. The enzyme exists in a cytoplasmic form in a wide range of plants, animals, and fungi. It has also been detected in several bacteria and a chloroplast form is observed in alga and higher plants. The enzyme has been purified from a wide range of organisms and its active form is a multimer of identical subunits ranging in molecular weight from 58,000 to 67,000. The activity of the synthase is stimulated by NH4Cl and inhibited by glucitol 6-phosphate and 2-deoxyglucose 6-phosphate. Structural genes (INO1) encoding the 1L-myo-inositol-1-phosphate synthase subunit have been isolated from several eukaryotic microorganisms and higher plants. In baker's yeast, Saccharomyces cerevisiae, the transcriptional regulation of the INO1 gene has been studied in detail and its expression is sensitive to the availability of phospholipid precursors as well as growth phase. The regulation of the structural gene encoding 1L-myo-inositol-1-phosphate synthase has also been analyzed at the transcriptional level in the aquatic angiosperm, Spirodela polyrrhiza and the halophyte, Mesembryanthemum crystallinum.


Asunto(s)
Mio-Inositol-1-Fosfato Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Regulación Enzimológica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Mio-Inositol-1-Fosfato Sintasa/química , Mio-Inositol-1-Fosfato Sintasa/genética , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 272(33): 20873-83, 1997 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9252414

RESUMEN

In yeast, mutations in the CDP-choline pathway for phosphatidylcholine biosynthesis permit the cell to grow even when the SEC14 gene is completely deleted (Cleves, A., McGee, T., Whitters, E., Champion, K., Aitken, J., Dowhan, W., Goebl, M., and Bankaitis, V. (1991) Cell 64, 789-800). We report that strains carrying mutations in the CDP-choline pathway, such as cki1, exhibit a choline excretion phenotype due to production of choline during normal turnover of phosphatidylcholine. Cells carrying cki1 in combination with sec14(ts), a temperature-sensitive allele in the gene encoding the phosphatidylinositol/phosphatidylcholine transporter, have a dramatically increased choline excretion phenotype when grown at the sec14(ts)-restrictive temperature. We show that the increased choline excretion in sec14(ts) cki1 cells is due to increased turnover of phosphatidylcholine via a mechanism consistent with phospholipase D-mediated turnover. We propose that the elevated rate of phosphatidylcholine turnover in sec14(ts) cki1 cells provides the metabolic condition that permits the secretory pathway to function when Sec14p is inactivated. As phosphatidylcholine turnover increases in sec14(ts) cki1 cells shifted to the restrictive temperature, the INO1 gene (encoding inositol-1-phosphate synthase) is also derepressed, leading to an inositol excretion phenotype (Opi-). Misregulation of the INO1 gene has been observed in many strains with altered phospholipid metabolism, and the relationship between phosphatidylcholine turnover and regulation of INO1 and other co-regulated genes of phospholipid biosynthesis is discussed.


Asunto(s)
Proteínas Portadoras/fisiología , Regulación Enzimológica de la Expresión Génica , Proteínas de la Membrana , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Colina/metabolismo , Inositol/metabolismo , Proteínas de Transferencia de Fosfolípidos , Fosfolípidos/análisis , Fosfolípidos/metabolismo
20.
J Biol Chem ; 271(41): 25692-8, 1996 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-8810347

RESUMEN

In yeast, as in other eukaryotes, phosphatidylcholine (PC) can be synthesized via methylation of phosphatidylethanolamine or from free choline via the CDP-choline pathway. In yeast, PC biosynthesis is required for the repression of the phospholipid biosynthetic genes, including the INO1 gene, in response to inositol. In this study, we analyzed the effect of mutations in genes encoding enzymes involved in PC biosynthesis on the transcriptional regulation of phospholipid biosynthetic genes. We report that repression of INO1 transcription in response to inositol is clearly dependent on ongoing PC biosynthesis, but it is independent of the route of synthesis. Our results also suggest that intermediates in the phosphatidylethanolamine methylation and CDP-choline pathways are not responsible for generating the regulatory signal that results in repression of INO1 and other coregulated genes of phospholipid biosynthesis. Furthermore, repression of INO1 is not tightly correlated to the proportion of PC in the total cellular phospholipids. Rather, we report that when the rate of synthesis of PC becomes growth limiting, the addition of inositol fails to repress the phospholipid biosynthetic genes, but when the rate of PC synthesis is sufficient to sustain normal growth, the addition of inositol to the growth medium has the effect of repressing INO1 and other phospholipid biosynthetic genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Mio-Inositol-1-Fosfato Sintasa/biosíntesis , Fosfatidilcolinas/biosíntesis , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Colina/metabolismo , Genes Fúngicos , Genotipo , Cinética , Fenotipo , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...