Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 154: 213643, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778291

RESUMEN

Triple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered. Our data revealed that suppression of one of the central nodes of this signaling pathway, MEK1, affects proliferation, migration, and invasion of TNBC cells, that may be explained by the reversion of the epithelial-mesenchymal transition phenotype, which is facilitated by the MMP-2/MMP-9 downregulation. Moreover, an exosome-based system was successfully generated for the siRNA loading (iExoMEK1). Our data suggested absence of modification of the physical properties and general integrity of the iExoMEK1 comparatively to the unmodified counterparts. Such exosome-mediated downregulation of MEK1 led to a tumor regression accompanied by a decrease of angiogenesis using the chick chorioallantoic-membrane model. Our results highlight the potential of the targeting of MAPK/ERK cascade as a promising therapeutic approach against TNBC.


Asunto(s)
Exosomas , Neoplasias de la Mama Triple Negativas , Humanos , Proliferación Celular/genética , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Exosomas/genética , Exosomas/metabolismo
2.
Eur Urol Open Sci ; 44: 1-10, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36185585

RESUMEN

Background: Molecular detection of lymph node (LN) micrometastases by analyzing mRNA expression of epithelial markers in prostate cancer (PC) patients provides higher sensitivity than histopathological examination. Objective: To investigate which type of marker to use and whether molecular detection of micrometastases in LNs was predictive of biochemical recurrence. Design setting and participants: LN samples from PC patients undergoing radical prostatectomy with extended LN dissection between 2009 and 2011 were examined for the presence of micrometastases by both routine histopathology and molecular analyses. Outcome measurements and statistical analysis: The mRNA expression of a panel of markers of prostate epithelial cells, prostate stem cell-like cells, epithelial-to-mesenchymal transition, and stromal activation, was performed by quantitative real-time polymerase chain reaction. The expression levels of these markers in LN metastases from three PC patients were compared with the expression levels in LN from five control patients without PC in order to identify the panel of markers best suited for the molecular detection of LN metastases. The predictive value of the molecular detection of micrometastases for biochemical recurrence was assessed after a follow-up of 10 yr. Results and limitations: Prostate epithelial markers are better suited for the detection of occult LN metastases than molecular markers of stemness, epithelial-to-mesenchymal transition, or reactive stroma. An analysis of 1023 LNs from 60 PC patients for the expression of prostate epithelial cell markers has revealed different expression levels and patterns between patients and between LNs of the same patient. The positive predictive value of molecular detection of occult LN metastasis for biochemical recurrence is 66.7% and the negative predictive value is 62.5%. Limitations are sample size and the hypothesis-driven selection of markers. Conclusions: Molecular detection of epithelial cell markers increases the number of positive LNs and predicts tumor recurrence already at surgery. Patient summary: We show that a panel of epithelial prostate markers rather than single genes is preferred for the molecular detection of lymph node micrometastases not visible at histopathological examination.

3.
Extracell Vesicle ; 12022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37503329

RESUMEN

Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors.

4.
Sci Rep ; 10(1): 18377, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110184

RESUMEN

The Bacillus Calmette-Guerin (BCG) vaccine provides protection against tuberculosis (TB), and is thought to provide protection against non-TB infectious diseases. BCG vaccination has recently been proposed as a strategy to prevent infection with SARS-CoV-2 (CoV-2) to combat the COVID-19 outbreak, supported by its potential to boost innate immunity and initial epidemiological analyses which observed reduced severity of COVID-19 in countries with universal BCG vaccination policies. Seventeen clinical trials are currently registered to inform on the benefits of BCG vaccinations upon exposure to CoV-2. Numerous epidemiological analyses showed a correlation between incidence of COVID-19 and BCG vaccination policies. These studies were not systematically corrected for confounding variables. We observed that after correction for confounding variables, most notably testing rates, there was no association between BCG vaccination policy and COVD-19 spread rate or percent mortality. Moreover, we found variables describing co-morbidities, including cardiovascular death rate and smoking prevalence, were significantly associated COVID-19 spread rate and percent mortality, respectively. While reporting biases may confound our observations, our epidemiological findings do not provide evidence to correlate overall BCG vaccination policy with the spread of CoV-2 and its associated mortality.


Asunto(s)
Vacuna BCG/administración & dosificación , Infecciones por Coronavirus/epidemiología , Vacunación Masiva/estadística & datos numéricos , Neumonía Viral/epidemiología , Tuberculosis/prevención & control , Vacuna BCG/uso terapéutico , COVID-19 , Correlación de Datos , Política de Salud , Humanos , Pandemias
5.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32796155

RESUMEN

Evaluation of potential immunity against the novel severe acute respiratory syndrome (SARS) coronavirus that emerged in 2019 (SARS-CoV-2) is essential for health, as well as social and economic recovery. Generation of antibody response to SARS-CoV-2 (seroconversion) may inform on acquired immunity from prior exposure, and antibodies against the SARS-CoV-2 spike protein receptor binding domain (S-RBD) are speculated to neutralize virus infection. Some serology assays rely solely on SARS-CoV-2 nucleocapsid protein (N-protein) as the antibody detection antigen; however, whether such immune responses correlate with S-RBD response and COVID-19 immunity remains unknown. Here, we generated a quantitative serological ELISA using recombinant S-RBD and N-protein for the detection of circulating antibodies in 138 serial serum samples from 30 reverse transcription PCR-confirmed, SARS-CoV-2-hospitalized patients, as well as 464 healthy and non-COVID-19 serum samples that were collected between June 2017 and June 2020. Quantitative detection of IgG antibodies against the 2 different viral proteins showed a moderate correlation. Antibodies against N-protein were detected at a rate of 3.6% in healthy and non-COVID-19 sera collected during the pandemic in 2020, whereas 1.9% of these sera were positive for S-RBD. Approximately 86% of individuals positive for S-RBD-binding antibodies exhibited neutralizing capacity, but only 74% of N-protein-positive individuals exhibited neutralizing capacity. Collectively, our studies show that detection of N-protein-binding antibodies does not always correlate with presence of S-RBD-neutralizing antibodies and caution against the extensive use of N-protein-based serology testing for determination of potential COVID-19 immunity.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Betacoronavirus/fisiología , Infecciones por Coronavirus , Nucleocápside/inmunología , Pandemias , Neumonía Viral , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunidad Adaptativa/inmunología , Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Neumonía Viral/inmunología , Neumonía Viral/terapia , Neumonía Viral/virología , Unión Proteica , SARS-CoV-2 , Sensibilidad y Especificidad , Seroconversión , Pruebas Serológicas/métodos
6.
Sci Signal ; 13(635)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518142

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.


Asunto(s)
Reprogramación Celular , Endotelio Vascular/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Endotelio Vascular/patología , Fibrosis , Riñón , Enfermedades Renales/genética , Enfermedades Renales/patología , Túbulos Renales/patología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-29661810

RESUMEN

Prostate cancer (PCa) prognosis and clinical outcome is directly dependent on metastatic occurrence. The bone microenvironment is a favorable metastatic niche. Different biological processes have been suggested to contribute to the osteotropism of PCa such as hemodynamics, bone-specific signaling interactions, and the "seed and soil" hypothesis. However, prevalence of disseminating tumor cells in the bone is not proportional to the actual occurrence of metastases, as not all patients will develop bone metastases. The fate and tumor-reforming ability of a metastatic cell is greatly influenced by the microenvironment. In this review, the molecular mechanisms of bone and soft-tissue metastasis in PCa are discussed. Specific attention is dedicated to the residual disease, novel approaches, and animal models used in oncological translational research are illustrated.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Próstata , Neoplasias de los Tejidos Blandos/secundario , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasia Residual/patología , Células Neoplásicas Circulantes/patología , Microambiente Tumoral/fisiología
8.
Oncotarget ; 9(48): 28877-28896, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29988965

RESUMEN

Prostate and breast cancers frequently metastasize to bone. The physiological bone homeostasis is perturbed once cancer cells proliferate at the bone metastatic site. Tumors are complex structures consisting of cancer cells and numerous stroma cells. In this study, we show that osteolytic cancer cells (PC-3 and MDA-MB231) induce transcriptome changes in the bone/bone marrow microenvironment (stroma). This stroma transcriptome differs from the previously reported stroma transcriptome of osteoinductive cancer cells (VCaP). While the biological process "angiogenesis/vasculogenesis" is enriched in both transcriptomes, the "vascular/axon guidance" process is a unique process that characterizes the osteolytic stroma. In osteolytic bone metastasis, angiogenesis is denoted by vessel morphology and marker expression specific for arteries/arterioles. Interestingly, intra-tumoral neurite-like structures were in proximity to arteries. Additionally, we found that increased numbers of mesenchymal stem cells and vascular smooth muscle cells, expressing osteolytic cytokines and inhibitors of bone formation, contribute to the osteolytic bone phenotype. Osteoinductive and osteolytic cancer cells induce different types of vessels, representing functionally different hematopoietic stem cell niches. This finding suggests different growth requirements of osteolytic and osteoinductive cancer cells and the need for a differential anti-angiogenic strategy to inhibit tumor growth in osteolytic and osteoblastic bone metastasis.

10.
Bonekey Rep ; 5: 777, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26916039

RESUMEN

Once tumor cells metastasize to the bone, the prognosis for prostate cancer patients is generally very poor. The mechanisms involved in bone metastasis, however, remain elusive, because of lack of relevant animal models. In this manuscript, we describe step-by-step protocols for the xenograft mouse models that are currently used for studying prostate cancer bone metastasis. The different routes of tumor inoculation (intraosseous, intracardiac, intravenous and orthotopic) presented are useful for exploring the biology of bone metastasis.

11.
Urology ; 92: 6-13, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26768714

RESUMEN

Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Próstata/patología , Humanos , Masculino , Osteoblastos/fisiología , Osteoclastos/fisiología
12.
PLoS One ; 9(12): e114530, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485970

RESUMEN

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/secundario , Células Epiteliales/patología , Sistema Hematopoyético/patología , Osteoblastos/patología , Neoplasias de la Próstata/patología , Nicho de Células Madre/genética , Células del Estroma/patología , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Sistema Hematopoyético/metabolismo , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Neovascularización Patológica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteoblastos/metabolismo , Osteogénesis/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...