Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Neurosci Biobehav Rev ; 162: 105693, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697379

RESUMEN

Music and ketamine are both known to affect therapeutic outcomes, but few studies have investigated their co-administration. This scoping review describes the existing literature on the joint use of music and ketamine-or esketamine (the S(+) enantiomer of ketamine)-in humans. The review considers that extant studies have explored the intersection of ketamine/esketamine and music in healthy volunteers and in patients of various age groups, at different dosages, through different treatment processes, and have varied the sequence of playing music relative to ketamine/esketamine administration. Studies investigating the use of music during ketamine anesthesia are also included in the review because anesthesia and sedation were the early drivers of ketamine use. Studies pertaining to recreational ketamine use were omitted. The review was limited to articles published in the English language but not restricted by publication year. To the best of our knowledge, this scoping review is the first comprehensive exploration of the interplay between music and ketamine/esketamine and offers valuable insights to researchers interested in designing future studies.

2.
Bipolar Disord ; 26(2): 160-175, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37536999

RESUMEN

INTRODUCTION: The effects of body mass index (BMI) on the core symptoms of bipolar disorder (BD) and its implications for disease trajectory are largely unexplored. OBJECTIVE: To examine whether BMI impacted hospitalization rate, medical and psychiatric comorbidities, and core symptom domains such as depression and suicidality in BD. METHODS: Participants (15 years and older) were 2790 BD outpatients enrolled in the longitudinal STEP-BD study; all met DSM-IV criteria for BD-I, BD-II, cyclothymia, BD NOS, or schizoaffective disorder, bipolar subtype. BMI, demographic information, psychiatric and medical comorbidities, and other clinical variables such as bipolarity index, history of electroconvulsive therapy (ECT), and history of suicide attempts were collected at baseline. Longitudinal changes in Montgomery-Åsberg Depression Rating Scale (MADRS) score, Young Mania Rating Scale (YMRS) score, and hospitalizations during the study were also assessed. Depending on the variable of interest, odds-ratios, regression analyses, factor analyses, and graph analyses were applied. RESULTS: A robust increase in psychiatric and medical comorbidities was observed, particularly for baseline BMIs >35. A significant relationship was noted between higher BMI and history of suicide attempts, and individuals with BMIs >40 had the highest prevalence of suicide attempts. Obese and overweight individuals had a higher bipolarity index (a questionnaire measuring disease severity) and were more likely to have received ECT. Higher BMIs correlated with worsening trajectory of core depression symptoms and with worsening lassitude and inability to feel. CONCLUSIONS: In BD participants, elevated BMI was associated with worsening clinical features, including higher rates of suicidality, comorbidities, and core depression symptoms.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/psicología , Índice de Masa Corporal , Escalas de Valoración Psiquiátrica , Intento de Suicidio/psicología , Comorbilidad
3.
Neuropsychopharmacology ; 49(1): 23-40, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37340091

RESUMEN

The discovery of ketamine as a rapid-acting antidepressant led to a new era in the development of neuropsychiatric therapeutics, one characterized by an antidepressant response that occurred within hours or days rather than weeks or months. Considerable clinical research supports the use of-or further research with-subanesthetic-dose ketamine and its (S)-enantiomer esketamine in multiple neuropsychiatric disorders including depression, bipolar disorder, anxiety spectrum disorders, substance use disorders, and eating disorders, as well as for the management of chronic pain. In addition, ketamine often effectively targets symptom domains associated with multiple disorders, such as anxiety, anhedonia, and suicidal ideation. This manuscript: 1) reviews the literature on the pharmacology and hypothesized mechanisms of subanesthetic-dose ketamine in clinical research; 2) describes similarities and differences in the mechanism of action and antidepressant efficacy between racemic ketamine, its (S) and (R) enantiomers, and its hydroxynorketamine (HNK) metabolite; 3) discusses the day-to-day use of ketamine in the clinical setting; 4) provides an overview of ketamine use in other psychiatric disorders and depression-related comorbidities (e.g., suicidal ideation); and 5) provides insights into the mechanisms of ketamine and therapeutic response gleaned from the study of other novel therapeutics and neuroimaging modalities.


Asunto(s)
Trastorno Bipolar , Ketamina , Humanos , Ketamina/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Trastorno Bipolar/tratamiento farmacológico , Anhedonia , Trastornos de Ansiedad/tratamiento farmacológico , Depresión/metabolismo
4.
Front Neurosci ; 17: 1228455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37592949

RESUMEN

Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.

5.
Pharmacol Ther ; 246: 108431, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146727

RESUMEN

Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist first developed as an anesthetic, has shown significant promise as a medication with rapid antidepressant properties in treatment-resistant depression. However, concerns such as adverse side effects and potential misuse liability have limited its widespread use. Racemic ketamine has two enantiomers-(S)- and (R)-ketamine-that appear to have disparate underlying mechanisms. This brief review summarizes some of the most recent preclinical and clinical research regarding the convergent and divergent prophylactic, immediate, and sustained antidepressant effects of (S)- and (R)-ketamine while addressing potential differences in their side effect and misuse liability profiles. Preclinical research suggests divergent mechanisms underlying (S)- and (R)-ketamine, with (S)-ketamine more directly affecting mechanistic target of rapamycin complex 1 (mTORC1) signaling and (R)-ketamine more directly affecting extracellular signal-related kinase (ERK) signaling. Clinical research suggests that (R)-ketamine has a milder side effect profile than (S)-ketamine and decreases depression rating scale scores, but recent randomized, controlled trials found that it had no significant antidepressant efficacy compared to placebo, suggesting that caution is warranted in interpreting its therapeutic potential. Future preclinical and clinical research is needed to maximize the efficacy of each enantiomer, either by optimizing dose, route of administration, or administration paradigm.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ketamina , Humanos , Ketamina/efectos adversos , Antidepresivos/efectos adversos , Transducción de Señal , Receptores de N-Metil-D-Aspartato/metabolismo , Depresión/tratamiento farmacológico
6.
Drug Discov Today ; 28(4): 103518, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758932

RESUMEN

Well-established animal models of depression have described a proximal relationship between stress and central nervous system (CNS) inflammation - a relationship mirrored in the peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary adrenal (HPA) axis, the kynurenine pathway or by cytokine suppression. Further investigations into the relationship between ketamine, inflammation and stress could provide insight into ketamine's unique therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based antidepressants.


Asunto(s)
Depresión , Ketamina , Animales , Depresión/tratamiento farmacológico , Ketamina/farmacología , Ketamina/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
7.
Neuropharmacology ; 226: 109422, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36646310

RESUMEN

The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".


Asunto(s)
Alucinógenos , Ketamina , Ketamina/farmacología , Ketamina/uso terapéutico , Alucinógenos/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ácido gamma-Aminobutírico , Transducción de Señal , Depresión/tratamiento farmacológico
8.
J Nucl Med ; 63(Suppl 1): 53S-59S, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35649646

RESUMEN

The most frequently studied target of neuroinflammation using PET is 18-kDa translocator protein, but its limitations have spurred the molecular imaging community to find more promising targets. This article reviews the development of PET radioligands for cyclooxygenase (COX) subtypes 1 and 2, enzymes that catalyze the production of inflammatory prostanoids in the periphery and brain. Although both isozymes produce the same precursor compound, prostaglandin H2, they have distinct functions based on their differential cellular localization in the periphery and brain. For example, COX-1 is located primarily in microglia, a resident inflammatory cell in the brain whose role in producing inflammatory cytokines is well documented. In contrast, COX-2 is located primarily in neurons and can be markedly upregulated by inflammatory and excitatory stimuli, but its functions are poorly understood. This article reviews these 2 isozymes as biomarkers of neuroinflammation, as well as the radioligands that have recently been developed to image them in animals and humans. To place this work into context, the properties of COX-1 and COX-2 are compared with 18-kDa translocator protein, with special consideration of their application in Alzheimer disease as a representative neurodegenerative disorder.


Asunto(s)
Enfermedad de Alzheimer , Receptores de GABA , Animales , Biomarcadores/metabolismo , Ciclooxigenasa 2 , Isoenzimas , Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
9.
Discov Ment Health ; 2(1): 9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509843

RESUMEN

This manuscript reviews the clinical evidence regarding single-dose intravenous (IV) administration of the novel glutamatergic modulator racemic (R,S)-ketamine (hereafter referred to as ketamine) as well as its S-enantiomer, intranasal esketamine, for the treatment of major depressive disorder (MDD). Initial studies found that a single subanesthetic-dose IV ketamine infusion rapidly (within one day) improved depressive symptoms in individuals with MDD and bipolar depression, with antidepressant effects lasting three to seven days. In 2019, esketamine received FDA approval as an adjunctive treatment for treatment-resistant depression (TRD) in adults. Esketamine was approved under a risk evaluation and mitigation strategy (REMS) that requires administration under medical supervision. Both ketamine and esketamine are currently viable treatment options for TRD that offer the possibility of rapid symptom improvement. The manuscript also reviews ketamine's use in other psychiatric diagnoses-including suicidality, obsessive-compulsive disorder, post-traumatic stress disorder, substance abuse, and social anxiety disorder-and its potential adverse effects. Despite limited data, side effects for antidepressant-dose ketamine-including dissociative symptoms, hypertension, and confusion/agitation-appear to be tolerable and limited to around the time of treatment. Relatively little is known about ketamine's longer-term effects, including increased risks of abuse and/or dependence. Attempts to prolong ketamine's effects with combined therapy or a repeat-dose strategy are also reviewed, as are current guidelines for its clinical use. In addition to presenting a novel and valuable treatment option, studying ketamine also has the potential to transform our understanding of the mechanisms underlying mood disorders and the development of novel therapeutics.

10.
J Nucl Med ; 63(8): 1252-1258, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35027372

RESUMEN

Because of its excellent ratio of specific to nondisplaceable uptake, the radioligand 11C-ER176 can successfully image 18-kDa translocator protein (TSPO), a biomarker of inflammation, in the human brain and accurately quantify target density in homozygous low-affinity binders. Our laboratory sought to develop an 18F-labeled TSPO PET radioligand based on ER176 with the potential for broader distribution. This study used generic 11C labeling and in vivo performance in the monkey brain to select the most promising among 6 fluorine-containing analogs of ER176 for subsequent labeling with longer-lived 18F. Methods: Six fluorine-containing analogs of ER176-3 fluoro and 3 trifluoromethyl isomers-were synthesized and labeled by 11C methylation at the secondary amide group of the respective N-desmethyl precursor. PET imaging of the monkey brain was performed at baseline and after blockade by N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide (PK11195). Uptake was quantified using radiometabolite-corrected arterial input function. The 6 candidate radioligands were ranked for performance on the basis of 2 in vivo criteria: the ratio of specific to nondisplaceable uptake (i.e., nondisplaceable binding potential [BPND]) and the time stability of total distribution volume (VT), an indirect measure of lack of radiometabolite accumulation in the brain. Results: Total TSPO binding was quantified as VT corrected for plasma free fraction (VT/fP) using Logan graphical analysis for all 6 radioligands. VT/fP was generally high at baseline (222 ± 178 mL·cm-3) and decreased by 70%-90% after preblocking with PK11195. BPND calculated using the Lassen plot was 9.6 ± 3.8; the o-fluoro radioligand exhibited the highest BPND (12.1), followed by the m-trifluoromethyl (11.7) and m-fluoro (8.1) radioligands. For all 6 radioligands, VT reached 90% of the terminal 120-min values by 70 min and remained relatively stable thereafter, with excellent identifiability (SEs < 5%), suggesting that no significant radiometabolites accumulated in the brain. Conclusion: All 6 radioligands had good BPND and good time stability of VT Among them, the o-fluoro, m-trifluoromethyl, and m-fluoro compounds were the 3 best candidates for development as radioligands with an 18F label.


Asunto(s)
Flúor , Receptores de GABA , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Flúor/metabolismo , Humanos , Tomografía de Emisión de Positrones/métodos , Quinazolinas , Radiofármacos/metabolismo , Receptores de GABA/metabolismo
12.
Int J Neuropsychopharmacol ; 25(3): 197-214, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34865007

RESUMEN

BACKGROUND: Suicide is a global health crisis. However, no objective biomarkers of suicide risk currently exist, and self-reported data can be unreliable, which limits prediction, diagnostic, and treatment efforts. Reliable biomarkers that can differentiate between diagnostic subgroups, predict worsening symptoms, or suggest novel therapeutic targets would be extremely valuable for patients, researchers, and clinicians. METHODS: MEDLINE was searched for reports published between 2016 and 2021 using search terms (suicid*) AND (biomarker*) OR (indicat*). Reports that compared biomarkers between suicidal ideation, suicide attempt, death from suicide, or any suicide subgroup against other neuropsychiatric disorders were included. Studies exclusively comparing suicidal behavior or death from suicide with healthy controls were not included to ensure that biomarkers were specific to suicide and not other psychopathology. RESULTS: This review summarizes the last 5 years of research into suicide-associated biomarkers and provides a comprehensive guide for promising and novel biomarkers that encompass varying presentations of suicidal ideation, suicide attempt, and death by suicide. The serotonergic system, inflammation, hypothalamic-pituitary-adrenal axis, lipids, and endocannabinoids emerged as the most promising diagnostic, predictive, and therapeutic indicators. CONCLUSIONS: The utility of diagnostic and predictive biomarkers is evident, particularly for suicide prevention. While larger-scale studies and further in-depth research are required, the last 5 years of research has uncovered essential biomarkers that could ultimately improve predictive strategies, aid diagnostics, and help develop future therapeutic targets.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Biomarcadores , Humanos , Factores de Riesgo , Ideación Suicida , Intento de Suicidio/prevención & control , Intento de Suicidio/psicología
13.
Prog Neurobiol ; 206: 102140, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403718

RESUMEN

Depression is frequently associated with sleep problems, and clinical improvement often coincides with the normalization of sleep architecture and realignment of circadian rhythm. The effectiveness of treatments targeting sleep in depressed patients, such as sleep deprivation, further demonstrates the confluence of sleep and mood. Moreover, recent studies showing that the rapid-acting antidepressant ketamine influences processes related to sleep-wake neurobiology have led to novel hypotheses explaining rapid and sustained antidepressant effects. Despite the available evidence, studies addressing ketamine's antidepressant effects have focused on pharmacology and often overlooked the role of physiology. To explore this discrepancy in research on rapid-acting antidepressants, we examined articles published between 2009-2019. A keyword search algorithm indicated that vast majority of the articles completely ignored sleep. Out of the 100 most frequently cited preclinical and clinical research papers, 89 % and 71 %, respectively, did not mention sleep at all. Furthermore, only a handful of these articles disclosed key experimental variables, such as the times of treatment administration or behavioral testing, let alone considered the potential association between these variables and experimental observations. Notably, in preclinical studies, treatments were preferentially administered during the inactive period, which is the polar opposite of clinical practice and research. We discuss the potential impact of this practice on the results in the field. Our hope is that this perspective will serve as a wake-up call to (re)-examine rapid-acting antidepressant effects with more appreciation for the role of sleep and chronobiology.


Asunto(s)
Sueño , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ritmo Circadiano/efectos de los fármacos , Humanos , Ketamina/farmacología , Sueño/efectos de los fármacos
14.
Expert Opin Pharmacother ; 22(17): 2405-2415, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34252320

RESUMEN

Introduction: Treatment-resistant depression (TRD) is a complex, multifactorial, and biologically heterogeneous disorder with debilitating outcomes. Understanding individual reasons why patients do not respond to treatment is necessary for improving clinical recommendations regarding medication regimens, augmentation strategies, and alternative treatments.Areas covered: This manuscript reviews evidence-based treatment strategies for the clinical management of TRD. Current developments in the field and potential future recommendations for personalized treatment of TRD are also discussed.Expert opinion: Treatment guidelines for TRD are limited by the heterogeneous nature of the disorder. Furthermore, current strategies reflect this heterogeneity by emphasizing disease characteristics as well as drug trial response or failure. Developing robust biomarkers that could one day be integrated into clinical practice has the potential to advance specific treatment targets and ultimately improve treatment and remission outcomes.


Asunto(s)
Depresión , Trastorno Depresivo Resistente al Tratamiento , Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Humanos
15.
CNS Drugs ; 35(5): 527-543, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33904154

RESUMEN

The efficacy of standard antidepressants is limited for many patients with mood disorders such as major depressive disorder (MDD) and bipolar depression, underscoring the urgent need to develop novel therapeutics. Both clinical and preclinical studies have implicated glutamatergic system dysfunction in the pathophysiology of mood disorders. In particular, rapid reductions in depressive symptoms have been observed in response to subanesthetic doses of the glutamatergic modulator racemic (R,S)-ketamine in individuals with mood disorders. These results have prompted investigation into other glutamatergic modulators for depression, both as monotherapy and adjunctively. Several glutamate receptor-modulating agents have been tested in proof-of-concept studies for mood disorders. This manuscript gives a brief overview of the glutamate system and its relevance to rapid antidepressant response and discusses the existing clinical evidence for glutamate receptor-modulating agents, including (1) broad glutamatergic modulators ((R,S)-ketamine, esketamine, (R)-ketamine, (2R,6R)-hydroxynorketamine [HNK], dextromethorphan, Nuedexta [a combination of dextromethorphan and quinidine], deudextromethorphan [AVP-786], axsome [AXS-05], dextromethadone [REL-1017], nitrous oxide, AZD6765, CLE100, AGN-241751); (2) glycine site modulators (D-cycloserine [DCS], NRX-101, rapastinel [GLYX-13], apimostinel [NRX-1074], sarcosine, 4-chlorokynurenine [4-Cl-KYN/AV-101]); (3) subunit (NR2B)-specific N-methyl-D-aspartate (NMDA) receptor antagonists (eliprodil [EVT-101], traxoprodil [CP-101,606], rislenemdaz [MK-0657/CERC-301]); (4) metabotropic glutamate receptor (mGluR) modulators (basimglurant, AZD2066, RG1578, TS-161); and (5) mammalian target of rapamycin complex 1 (mTORC1) activators (NV-5138). Many of these agents are still in the preliminary stages of development. Furthermore, to date, most have demonstrated relatively modest effects compared with (R,S)-ketamine and esketamine, though some have shown more favorable characteristics. Of these novel agents, the most promising, and the ones for which the most evidence exists, appear to be those targeting ionotropic glutamate receptors.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/uso terapéutico , Trastornos del Humor/tratamiento farmacológico , Receptores de Glutamato/efectos de los fármacos , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/fisiopatología , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/fisiopatología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Humanos , Trastornos del Humor/fisiopatología , Receptores de Glutamato/metabolismo
16.
Mol Psychiatry ; 26(8): 4085-4095, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31732715

RESUMEN

Dysfunction in a wide array of systems-including the immune, monoaminergic, and glutamatergic systems-is implicated in the pathophysiology of depression. One potential intersection point for these three systems is the kynurenine (KYN) pathway. This study explored the impact of the prototypic glutamatergic modulator ketamine on the endogenous KYN pathway in individuals with bipolar depression (BD), as well as the relationship between response to ketamine and depression-related behavioral and peripheral inflammatory markers. Thirty-nine participants with treatment-resistant BD (23 F, ages 18-65) received a single ketamine infusion (0.5 mg/kg) over 40 min. KYN pathway analytes-including plasma concentrations of indoleamine 2,3-dioxygenase (IDO), KYN, kynurenic acid (KynA), and quinolinic acid (QA)-were assessed at baseline (pre-infusion), 230 min, day 1, and day 3 post-ketamine. General linear models with restricted maximum likelihood estimation and robust sandwich variance estimators were implemented. A repeated effect of time was used to model the covariance of the residuals with an unstructured matrix. After controlling for age, sex, and body mass index (BMI), post-ketamine IDO levels were significantly lower than baseline at all three time points. Conversely, ketamine treatment significantly increased KYN and KynA levels at days 1 and 3 versus baseline. No change in QA levels was observed post-ketamine. A lower post-ketamine ratio of QA/KYN was observed at day 1. In addition, baseline levels of proinflammatory cytokines and behavioral measures predicted KYN pathway changes post ketamine. The results suggest that, in addition to having rapid and sustained antidepressant effects in BD participants, ketamine also impacts key components of the KYN pathway.


Asunto(s)
Trastorno Bipolar , Quinurenina , Adolescente , Adulto , Anciano , Trastorno Bipolar/tratamiento farmacológico , Humanos , Inmunidad , Ácido Quinurénico , Persona de Mediana Edad , Triptófano , Adulto Joven
17.
Int J Neuropsychopharmacol ; 24(1): 8-21, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33252694

RESUMEN

BACKGROUND: The glutamatergic modulator ketamine has created a blueprint for studying novel pharmaceuticals in the field. Recent studies suggest that "classic" serotonergic psychedelics (SPs) may also have antidepressant efficacy. Both ketamine and SPs appear to produce rapid, sustained antidepressant effects after a transient psychoactive period. METHODS: This review summarizes areas of overlap between SP and ketamine research and considers the possibility of a common, downstream mechanism of action. The therapeutic relevance of the psychoactive state, overlapping cellular and molecular effects, and overlapping electrophysiological and neuroimaging observations are all reviewed. RESULTS: Taken together, the evidence suggests a potentially shared mechanism wherein both ketamine and SPs may engender rapid neuroplastic effects in a glutamatergic activity-dependent manner. It is postulated that, though distinct, both ketamine and SPs appear to produce acute alterations in cortical network activity that may initially produce psychoactive effects and later produce milder, sustained changes in network efficiency associated with therapeutic response. However, despite some commonalities between the psychoactive component of these pharmacologically distinct therapies-such as engagement of the downstream glutamatergic pathway-the connection between psychoactive impact and antidepressant efficacy remains unclear and requires more rigorous research. CONCLUSIONS: Rapid-acting antidepressants currently under investigation may share some downstream pharmacological effects, suggesting that their antidepressant effects may come about via related mechanisms. Given the prototypic nature of ketamine research and recent progress in this area, this platform could be used to investigate entirely new classes of antidepressants with rapid and robust actions.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/farmacología , Alucinógenos/farmacología , Ketamina/farmacología , Serotoninérgicos/farmacología , Humanos
18.
Lancet Psychiatry ; 7(12): 1064-1074, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33098761

RESUMEN

Neuroinflammation is a multifaceted physiological and pathophysiological response of the brain to injury and disease. Given imaging findings of 18 kDa translocator protein (TSPO) and the development of radioligands for other inflammatory targets, PET imaging of neuroinflammation is at a particularly promising stage. This Review critically evaluates PET imaging results of inflammation in psychiatric disorders, including major depressive disorder, schizophrenia and psychosis disorders, substance use, and obsessive-compulsive disorder. We also consider promising new targets that can be measured in the brain, such as monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, colony stimulating factor 1 receptor, and the purinergic P2X7 receptor. Thus far, the most compelling TSPO imaging results have arguably been found in major depressive disorder, for which consistent increases have been observed, and in schizophrenia and psychosis, for which patients show reduced TSPO levels. This pattern highlights the importance of validating brain biomarkers of neuroinflammation for each condition separately before moving on to patient stratification and treatment monitoring trials.


Asunto(s)
Encéfalo/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Trastornos Mentales/diagnóstico por imagen , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/patología , Humanos
19.
Lancet Neurol ; 19(11): 940-950, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33098803

RESUMEN

A growing need exists for reliable in-vivo measurement of neuroinflammation to better characterise the inflammatory processes underlying various diseases and to inform the development of novel therapeutics that target deleterious glial activity. PET is well suited to quantify neuroinflammation and has the potential to discriminate components of the neuroimmune response. However, there are several obstacles to the reliable quantification of neuroinflammation by PET imaging. Despite these challenges, PET studies have consistently identified associations between neuroimmune responses and pathophysiology in brain disorders such as Alzheimer's disease. Tissue studies have also begun to clarify the meaning of changes in PET signal in some diseases. Furthermore, although PET imaging of neuroinflammation does not have an established clinical application, novel targets are under investigation and a small but growing number of studies have suggested that this imaging modality could have a role in drug development. Future studies are needed to further improve our knowledge of the cellular mechanisms that underlie changes in PET signal, how immune response contributes to neurological disease, and how it might be therapeutically modified.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Astrocitos/metabolismo , Astrocitos/patología , Humanos , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Microglía/metabolismo
20.
Adv Pharmacol ; 89: 195-235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32616207

RESUMEN

As a field, psychiatry is undergoing an exciting paradigm shift toward early identification and intervention that will likely minimize both the burden associated with severe mental illnesses as well as their duration. In this context, the rapid-acting antidepressant ketamine has revolutionized our understanding of antidepressant response and greatly expanded the pharmacologic armamentarium for treatment-resistant depression. Efforts to characterize biomarkers of ketamine response support a growing emphasis on early identification, which would allow clinicians to identify biologically enriched subgroups with treatment-resistant depression who are more likely to benefit from ketamine therapy. This chapter presents a broad overview of a range of translational biomarkers, including those drawn from imaging and electrophysiological studies, sleep and circadian rhythms, and HPA axis/endocrine function as well as metabolic, immune, (epi)genetic, and neurotrophic biomarkers related to ketamine response. Ketamine's unique, rapid-acting properties may serve as a model to explore a whole new class of novel rapid-acting treatments with the potential to revolutionize drug development and discovery. However, it should be noted that although several of the biomarkers reviewed here provide promising insights into ketamine's mechanism of action, most studies have focused on acute rather than longer-term antidepressant effects and, at present, none of the biomarkers are ready for clinical use.


Asunto(s)
Biomarcadores/metabolismo , Encéfalo/metabolismo , Ketamina/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Ritmo Circadiano/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Humanos , Ketamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...