Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Total Environ ; 925: 171585, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462008

RESUMEN

Although the concentrations of five basic ambient air pollutants in the Yangtze River Delta (YRD) have been reduced since the implementation of the "Air Pollution Prevention and Control Action Plan" in 2013, the ozone concentrations still increase. In order to explore the causes of ozone pollution in YRD, we use the GEOS-Chem and its adjoint model to study the sensitivities of ozone to its precursor emissions from different source regions and emission sectors during heavy ozone pollution events under typical circulation patterns. The Multi-resolution Emission Inventory for China (MEIC) of Tsinghua University and 0.25° × 0.3125° nested grids are adopted in the model. By using the T-mode principal component analysis (T-PCA), the circulation patterns of heavy ozone pollution days (observed MDA8 O3 concentrations ≥160 µg m-3) in Nanjing located in the center area of YRD from 2013 to 2019 are divided into four types, with the main features of Siberian Low, Lake Balkhash High, Northeast China Low, Yellow Sea High, and southeast wind at the surface. The adjoint results show that the contributions of emissions emitted from Jiangsu and Zhejiang are the largest to heavy ozone pollution in Nanjing. The 10 % reduction of anthropogenic NOx and NMVOCs emissions in Jiangsu, Zhejiang and Shanghai could reduce the ozone concentrations in Nanjing by up to 3.40 µg m-3 and 0.96 µg m-3, respectively. However, the reduction of local NMVOCs emissions has little effect on ozone concentrations in Nanjing, and the reduction of local NOx emissions would even increase ozone pollution. For different emissions sectors, industry emissions account for 31 %-74 % of ozone pollution in Nanjing, followed by transportation emissions (18 %-49 %). This study could provide the scientific basis for forecasting ozone pollution events and formulating accurate strategies of emission reduction.

2.
Environ Sci Technol ; 58(1): 628-638, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153406

RESUMEN

China's industrial restructuring and pollution controls have altered the contributions of individual sources to varying air quality over the past decade. We used the GEOS-Chem adjoint model and investigated the changing sensitivities of PM2.5 and ozone (O3) to multiple species and sources from 2010 to 2020 in the central Yangtze River Delta (YRDC), the largest economic region in China. Controlling primary particles and SO2 from industrial and residential sectors dominated PM2.5 decline, and reducing CO from multiple sources and ≥C3 alkenes from vehicles restrained O3. The chemical regime of O3 formation became less VOC-limited, attributable to continuous NOX abatement for specific sources, including power plants, industrial combustion, cement production, and off-road traffic. Regional transport was found to be increasingly influential on PM2.5. To further improve air quality, management of agricultural activities to reduce NH3 is essential for alleviating PM2.5 pollution, while controlling aromatics, alkenes, and alkanes from industry and gasoline vehicles is effective for O3. Reducing the level of NOX from nearby industrial combustion and transportation is helpful for both species. Our findings reveal the complexity of coordinating control of PM2.5 and O3 pollution in a fast-developing region and support science-based policymaking for other regions with similar air pollution problems.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Ríos , Monitoreo del Ambiente , Contaminación del Aire/análisis , China , Material Particulado/análisis , Alquenos
3.
Environ Sci Technol ; 57(37): 13793-13807, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37671787

RESUMEN

The impact of aerosols on human health and climate is well-recognized, yet many studies have only focused on total PM2.5 or changes from anthropogenic activities. This study quantifies the health and climate effects of organic aerosols (OA) from anthropogenic, biomass burning, and biogenic sources. Using two atmospheric chemistry models, CAM-chem and GEOS-Chem, our findings reveal that anthropogenic primary OA (POA) has the highest efficiency for health effects but the lowest for direct radiative effects due to spatial and temporal variations associated with population and surface albedo. The treatment of POA as nonvolatile or semivolatile also influences these efficiencies through different chemical processes. Biogenic OA shows moderate efficiency for health effects and the highest for direct radiative effects but has the lowest efficiency for indirect effects due to the reduced high cloud, caused by stabilized temperature profiles from aerosol-radiation interactions in biogenic OA-rich regions. Biomass burning OA is important for cloud radiative effect changes in remote atmospheres due to its ability to be transported further than other OAs. This study highlights the importance of not only OA characteristics such as toxicity and refractive index but also atmospheric processes such as transport and chemistry in determining health and climate impact efficiencies.


Asunto(s)
Clima , Salud Global , Humanos , Atmósfera , Temperatura , Aerosoles
5.
Geohealth ; 7(3): e2022GH000767, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36949891

RESUMEN

We present a newly developed approach to characterize the sources of fine particulate matter (PM2.5)-related premature deaths in Europe using the chemical transport model GEOS-Chem and its adjoint. The contributions of emissions from each individual country, species, and sector are quantified and mapped out at km scale. In 2015, total PM2.5-related premature death is estimated to be 449,813 (257,846-722,138) in Europe, 59.0% of which were contributed by domestic anthropogenic emissions. The anthropogenic emissions of nitrogen oxides, ammonia, and organic carbon contributed most to the PM2.5-related health damages, making up 29.6%, 23.2%, and 16.8%, respectively of all domestic anthropogenic contributions. Residential, agricultural, and ground transport emissions are calculated to be the largest three sectoral sources of PM2.5-related health risks, accounting for 23.5%, 23.0%, and 19.4%, respectively, of total anthropogenic contributions within Europe. After excluding the influence of extra-regional sources, we find eastern European countries suffered from more premature deaths than their emissions caused; in contrast, the emissions from some central and western European regions contributed premature deaths exceeding three times the number of deaths that occurred locally. During 2005-2015, the first decade of PM2.5 regulation in Europe, emission controls reduced PM2.5-related health damages in nearly all European countries, resulting in 63,538 (46,092-91,082) fewer PM2.5-related premature deaths. However, our calculation suggests that efforts to reduce air pollution from key sectors in some countries can be offset by the lag in control of emissions in others. International cooperation is therefore vitally important for tackling air pollution and reducing corresponding detrimental effects on public health.

6.
Geohealth ; 7(1): e2022GH000713, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36618583

RESUMEN

Exposure to air pollution is a leading risk factor for premature death globally; however, the complexity of its formation and the diversity of its sources can make it difficult to address. The Group of Twenty (G20) countries are a collection of the world's largest and most influential economies and are uniquely poised to take action to reduce the global health burden associated with air pollution. We present a framework capable of simultaneously identifying regional and sectoral sources of the health impacts associated with two air pollutants, fine particulate matter (PM2.5) and ozone (O3) in G20 countries; this framework is also used to assess the health impacts associated with emission reductions. This approach combines GEOS-Chem adjoint sensitivities, satellite-derived data, and a new framework designed to better characterize the non-linear relationship between O3 exposures and nitrogen oxides emissions. From this approach, we estimate that a 50% reduction of land transportation emissions by 2040 would result in 251 thousand premature deaths avoided in G20 countries. These premature deaths would be attributable equally to reductions in PM2.5 and O3 exposure which make up 51% and 49% of the potential benefits, respectively. In our second application, we estimate that the energy generation related co-benefits associated with G20 countries staying on pace with their net-zero carbon dioxide targets would be 290 thousand premature deaths avoided in 2040; action by India (47%) would result in the most benefits of any country and a majority of these avoided deaths would be attributable to reductions in PM2.5 exposure (68%).

7.
Environ Res ; 220: 115230, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623681

RESUMEN

Cambodia's 16.5 million people are exposed to air pollution in excess of World Health Organisation guidelines. The Royal Government of Cambodia has regulated air pollutant emissions and concentrations since 2000, but rapid economic growth and energy consumption means air pollution continues to impact human health. In December 2021, the Ministry of Environment of Cambodia published Cambodia's first Clean Air Plan that outlines actions to reduce air pollutant emissions over the next decade. This work presents the quantitative air pollution mitigation assessment underpinning the identification and evaluation of measures included in Cambodia's Clean Air Plan. Historic emissions of particulate matter (PM2.5, black carbon, organic carbon) and gaseous (nitrogen oxides, volatile organic compounds, sulphur dioxide, ammonia, and carbon monoxide) air pollutants are quantified between 2010 and 2015, and projected to 2030 for a baseline scenario. Mitigation scenarios reflecting implementation of 14 measures included in Cambodia's Clean Air Plan were modelled, to quantify the national reduction in emissions, from which the reduction in ambient PM2.5 exposure and attributable health burdens were estimated. In 2015, the residential, transport, and waste sectors contribute the largest fraction of national total air pollutant emissions. Without emission reduction measures, air pollutant emissions could increase by between 50 and 150% in 2030 compared to 2015 levels, predominantly due to increases in transport emissions. The implementation of the 14 mitigation measures could substantially reduce emissions of all air pollutants, by between 60 and 80% in 2030 compared to the baseline. This reduction in emissions was estimated to avoid approximately 900 (95% C.I.: 530-1200) premature deaths per year in 2030 compared to the baseline scenario. In addition to improving air pollution and public health, Cambodia's Clean Air Plan could also to lead to additional benefits, including a 19% reduction in carbon dioxide emissions, simultaneously contributing to Cambodia's climate change goals.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Cambodia , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Dióxido de Azufre
8.
Nat Commun ; 13(1): 7459, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460672

RESUMEN

Quantitative estimations of atmospheric aerosol absorption are rather uncertain due to the lack of reliable information about the global distribution. Because the information about aerosol properties is commonly provided by single-viewing photometric satellite sensors that are not sensitive to aerosol absorption. Consequently, the uncertainty in aerosol radiative forcing remains one of the largest in the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC AR5 and AR6). Here, we use multi-angular polarimeters (MAP) to provide constraints on emission of absorbing aerosol species and estimate global aerosol absorption optical depth (AAOD) and its climate effect. Our estimate of modern-era mid-visible AAOD is 0.0070 that is higher than IPCC by a factor of 1.3-1.8. The black carbon instantaneous direct radiative forcing (BC DRF) is +0.33 W/m2 [+0.17, +0.54]. The MAP constraint narrows the 95% confidence interval of BC DRF by a factor of 2 and boosts confidence in its spatial distribution.

9.
Atmos Environ (1994) ; 286: 119234, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36193038

RESUMEN

To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by emissions within the city vs. outside its boundaries. We use the Intervention Model for Air Pollution (InMAP) global-through-urban reduced complexity air quality model with a high-resolution, global inventory of pollutant emissions to quantify the contribution of emissions by source type and location for 96 global cities. Among these cities, we find that the fraction of PM2.5 exposure caused by within-city emissions varies widely (µ = 37%; σ = 22%) and is not well-explained by surrounding population density. The list of most-important sources also varies by city. Compared to a more mechanistically detailed model, InMAP predicts urban measured concentrations with lower bias and error but also lower correlation. Predictive accuracy in urban areas is not particularly high with either model, suggesting an opportunity for improving global urban air emission inventories. We expect the results herein can be useful as a screening tool for policy options and, in the absence of available resources for further analysis, to inform policy action to improve public health.

10.
Geophys Res Lett ; 49(2): e2021GL096009, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35865332

RESUMEN

Top-down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector-based 4D-Var framework based on the GEOS-Chem adjoint model to address the impacts of co-emissions and chemical interactions on top-down emission estimates. We apply OMI NO2, OMI SO2, and MOPITT CO observations to estimate NO x , SO2, and CO emissions in East Asia during 2005-2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO2)-15% (SO2) and normalized mean square error (NMSE) by 8% (SO2)-9% (NO2) compared to a species-based inversion. This new inversion captures the peak years of Chinese SO2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO2 trends mostly to energy and CO trend to residential emissions.

11.
J Geophys Res Atmos ; 127(7): e2021JD035844, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35865789

RESUMEN

We aim to reduce uncertainties in CH2O and other volatile organic carbon (VOC) emissions through assimilation of remote sensing data. We first update a three-dimensional (3D) chemical transport model, GEOS-Chem with the KORUSv5 anthropogenic emission inventory and inclusion of chemistry for aromatics and C2H4, leading to modest improvements in simulation of CH2O (normalized mean bias (NMB): -0.57 to -0.51) and O3 (NMB: -0.25 to -0.19) compared against DC-8 aircraft measurements during KORUS-AQ; the mixing ratio of most VOC species are still underestimated. We next constrain VOC emissions using CH2O observations from two satellites (OMI and OMPS) and the DC-8 aircraft during KORUS-AQ. To utilize data from multiple platforms in a consistent manner, we develop a two-step Hybrid Iterative Finite Difference Mass Balance and four-dimensional variational inversion system (Hybrid IFDMB-4DVar). The total VOC emissions throughout the domain increase by 47%. The a posteriori simulation reduces the low biases of simulated CH2O (NMB: -0.51 to -0.15), O3 (NMB: -0.19 to -0.06), and VOCs. Alterations to the VOC speciation from the 4D-Var inversion include increases of biogenic isoprene emissions in Korea and anthropogenic emissions in Eastern China. We find that the IFDMB method alone is adequate for reducing the low biases of VOCs in general; however, 4D-Var provides additional refinement of high-resolution emissions and their speciation. Defining reasonable emission errors and choosing optimal regularization parameters are crucial parts of the inversion system. Our new hybrid inversion framework can be applied for future air quality campaigns, maximizing the value of integrating measurements from current and upcoming geostationary satellite instruments.

12.
J Geophys Res Atmos ; 127(9): e2021JD035687, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35865809

RESUMEN

We conduct the first 4D-Var inversion of NH3 accounting for NH3 bi-directional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close (<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10%-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NH x wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-down NH3 emissions estimates associated with treatment of NH3 surface exchange.

13.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34753820

RESUMEN

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Asunto(s)
Contaminación del Aire , Atmósfera/química , COVID-19/psicología , Gases de Efecto Invernadero , Modelos Teóricos , COVID-19/epidemiología , Dióxido de Carbono , Cambio Climático , Humanos , Metano , Óxidos de Nitrógeno , Ozono
14.
Annu Rev Biomed Data Sci ; 4: 417-447, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465183

RESUMEN

Data from satellite instruments provide estimates of gas and particle levels relevant to human health, even pollutants invisible to the human eye. However, the successful interpretation of satellite data requires an understanding of how satellites relate to other data sources, as well as factors affecting their application to health challenges. Drawing from the expertise and experience of the 2016-2020 NASA HAQAST (Health and Air Quality Applied Sciences Team), we present a review of satellite data for air quality and health applications. We include a discussion of satellite data for epidemiological studies and health impact assessments, as well as the use of satellite data to evaluate air quality trends, support air quality regulation, characterize smoke from wildfires, and quantify emission sources. The primary advantage of satellite data compared to in situ measurements, e.g., from air quality monitoring stations, is their spatial coverage. Satellite data can reveal where pollution levels are highest around the world, how levels have changed over daily to decadal periods, and where pollutants are transported from urban to global scales. To date, air quality and health applications have primarily utilized satellite observations and satellite-derived products relevant to near-surface particulate matter <2.5 µm in diameter (PM2.5) and nitrogen dioxide (NO2). Health and air quality communities have grown increasingly engaged in the use of satellite data, and this trend is expected to continue. From health researchers to air quality managers, and from global applications to community impacts, satellite data are transforming the way air pollution exposure is evaluated.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/efectos adversos
15.
Environ Sci Technol ; 55(9): 5752-5762, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890767

RESUMEN

Effective mitigation of surface ozone pollution entails detailed knowledge of the contributing precursors' sources. We use the GEOS-Chem adjoint model to analyze the precursors contributing to surface ozone in the Beijing-Tianjin-Hebei area (BTH) of China on days of different ozone pollution severities in June 2019. We find that BTH ozone on heavily polluted days is sensitive to local emissions, as well as to precursors emitted from the provinces south of BTH (Shandong, Henan, and Jiangsu, collectively the SHJ area). Heavy ozone pollution in BTH can be mitigated effectively by reducing NOx (from industrial processes and transportation), ≥C3 alkenes (from on-road gasoline vehicles and industrial processes), and xylenes (from paint use) emitted from both BTH and SHJ, as well as by reducing CO (from industrial processes, transportation, and power generation) and ≥C4 alkanes (from industrial processes, paint and solvent use, and on-road gasoline vehicles) emissions from SHJ. In addition, reduction of NOx, xylene, and ≥C3 alkene emissions within BTH would effectively decrease the number of BTH ozone-exceedance days. Our analysis pinpoint the key areas and activities for locally and regionally coordinated emission control efforts to improve surface ozone air quality in BTH.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Material Particulado/análisis
16.
Atmos Chem Phys ; 21(2): 951-971, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33613665

RESUMEN

We apply airborne measurements across three seasons (summer, winter and spring 2017-2018) in a multi-inversion framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source (32 %, 20 [16-23] Gg/d), while livestock (enteric/manure; 25 %, 15 [14-17] Gg/d) are the largest anthropogenic source. Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence have the largest influence on prediction accuracy; better representation of coupled soil temperature-hydrology effects is therefore needed. Our optimized regional livestock emissions agree well with the Gridded EPA estimates during spring (to within 7 %) but are ∼25 % higher during summer and winter. Spatial analysis further shows good top-down and bottom-up agreement for beef facilities (with mainly enteric emissions) but larger (∼30 %) seasonal discrepancies for dairies and hog farms (with >40 % manure emissions). Findings thus support bottom-up enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of management factors including field application. Overall, our results confirm the importance of intensive animal agriculture for regional methane emissions, implying substantial mitigation opportunities through improved management.

17.
Environ Pollut ; 273: 116421, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33460873

RESUMEN

High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOx, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOx emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1-4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.

18.
Geosci Model Dev ; 13(7): 2925-2944, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33343831

RESUMEN

We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM2.5) affect public health across the US.

19.
Environ Int ; 145: 106155, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33027737

RESUMEN

Low- and middle-income countries have the largest health burdens associated with air pollution exposure, and are particularly vulnerable to climate change impacts. Substantial opportunities have been identified to simultaneously improve air quality and mitigate climate change due to overlapping sources of greenhouse gas and air pollutant emissions and because a subset of pollutants, short-lived climate pollutants (SLCPs), directly contribute to both impacts. However, planners in low- and middle-income countries often lack practical tools to quantify the air pollution and climate change impacts of different policies and measures. This paper presents a modelling framework implemented in the Low Emissions Analysis Platform - Integrated Benefits Calculator (LEAP-IBC) tool to develop integrated strategies to improve air quality, human health and mitigate climate change. The framework estimates emissions of greenhouse gases, SLCPs and air pollutants for historical years, and future projections for baseline and mitigation scenarios. These emissions are then used to quantify i) population-weighted annual average ambient PM2.5 concentrations across the target country, ii) household PM2.5 exposure of different population groups living in households cooking using different fuels/technologies and iii) radiative forcing from all emissions. Health impacts (premature mortality) attributable to ambient and household PM2.5 exposure and changes in global average temperature change are then estimated. This framework is applied in Bangladesh to evaluate the air quality and climate change benefits from implementation of Bangladesh's Nationally Determined Contribution (NDC) and National Action Plan to reduce SLCPs. Results show that the measures included to reduce GHGs in Bangladesh's NDC also have substantial benefits for air quality and human health. Full implementation of Bangladesh's NDC, and National SLCP Plan would reduce carbon dioxide, methane, black carbon and primary PM2.5 emissions by 25%, 34%, 46% and 45%, respectively in 2030 compared to a baseline scenario. These emission reductions could reduce population-weighted ambient PM2.5 concentrations in Bangladesh by 18% in 2030, and avoid approximately 12,000 and 100,000 premature deaths attributable to ambient and household PM2.5 exposures, respectively, in 2030. As countries are simultaneously planning to achieve the climate goals in the Paris Agreement, improve air quality to reduce health impacts and achieve the Sustainable Development Goals, the LEAP-IBC tool provides a practical framework by which planners can develop integrated strategies, achieving multiple air quality and climate benefits.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Bangladesh , Cambio Climático , Humanos , Paris , Material Particulado/análisis
20.
Geohealth ; 4(7): e2020GH000270, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32642628

RESUMEN

The 2018 NASA Health and Air Quality Applied Science Team (HAQAST) "Indicators" Tiger Team collaboration between NASA-supported scientists and civil society stakeholders aimed to develop satellite-derived global air pollution and climate indicators. This Commentary shares our experience and lessons learned. Together, the team developed methods to track wildfires, dust storms, pollen counts, urban green space, nitrogen dioxide concentrations and asthma burdens, tropospheric ozone concentrations, and urban particulate matter mortality. Participatory knowledge production can lead to more actionable information but requires time, flexibility, and continuous engagement. Ground measurements are still needed for ground truthing, and sustained collaboration over time remains a challenge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...