Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5757, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982065

RESUMEN

Achieving an optimal balance between strength and ductility in advanced engineering materials has long been a challenge for researchers. In the field of material strengthening, most approaches that prevent or impede the motion of dislocations involve ductility reduction. In the present study, we propose a strengthening approach based on spinodal decomposition in which Cu and Al are introduced into a ferrous medium-entropy alloy. The matrix undergoes nanoscale periodic spinodal decomposition via a simple one-step aging procedure. Chemical fluctuations within periodic spinodal decomposed structures induce spinodal hardening, leading to a doubled strengthening effect that surpasses the conventional precipitation strengthening mechanism. Notably, the periodic spinodal decomposed structures effectively overcome strain localization issues, preserving elongation and doubling their mechanical strength. Spinodal decomposition offers high versatility because it can be implemented with minimal elemental addition, making it a promising candidate for enhancing the mechanical properties of various alloy systems.

2.
Microscopy (Oxf) ; 73(1): 1-13, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37702220

RESUMEN

Nanosized precipitates play a critical role in increasing the strength of metallic alloys. There are many reports that the initial precipitates are metastable phases holding a different composition and crystal structure from the equilibrium precipitate. The metastable precipitate transforms to its stable phase during heat treatment. A transmission electron microscope enables researchers to study the phase transition of metastable precipitates to stable phases due to its fine resolution in identifying crystal structures and chemical compositions. This review introduces the various phase transformation mechanisms of metastable precipitates to stable phases obtained from the analysis using a transmission electron microscope. The role of dislocation movement in the phase transition is further discussed.

3.
Appl Microsc ; 52(1): 14, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36538270

RESUMEN

An electron probe X-ray microanalyzer (EPMA) is an essential tool for studying chemical composition distribution in the microstructure. Quantifying chemical composition using standard specimens is commonly used to determine the composition of individual phases. However, the local difference in chemical composition in the standard specimens brings the deviation of the quantified composition from the actual one. This study introduces how to overcome the error of quantification in EPMA in the practical aspect. The obtained results are applied to evaluate the chemical composition of retained austenite in multi-phase steel. Film-type austenite shows higher carbon content than blocky-type one. The measured carbon contents of the retained austenite show good coherency with the calculated value from the X-ray diffraction.

4.
Nat Commun ; 13(1): 6766, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351925

RESUMEN

Chemical short-range order in disordered solid solutions often emerges with specific heat treatments. Unlike thermally activated ordering, mechanically derived short-range order (MSRO) in a multi-principal-element Fe40Mn40Cr10Co10 (at%) alloy originates from tensile deformation at 77 K, and its degree/extent can be tailored by adjusting the loading rates under quasistatic conditions. The mechanical response and multi-length-scale characterisation pointed to the minor contribution of MSRO formation to yield strength, mechanical twinning, and deformation-induced displacive transformation. Scanning and high-resolution transmission electron microscopy and the anlaysis of electron diffraction patterns revealed the microstructural features responsible for MSRO and the dependence of the ordering degree/extent on the applied strain rates. Here, we show that underpinned by molecular dynamics, MSRO in the alloys with low stacking-fault energies forms when loaded at 77 K, and these systems that offer different perspectives on the process of strain-induced ordering transition are driven by crystalline lattice defects (dislocations and stacking faults).

5.
Appl Microsc ; 50(1): 8, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580338

RESUMEN

Two thickness measurement methods using an electron energy loss spectroscopy (EELS) and 10a convergent beam electron diffraction (CBED) were compared in an Fe-18Mn-0.7C alloy. The thin foil specimen was firstly tilted to satisfy 10a two-beam condition. Low loss spectra of EELS and CBED patterns were acquired in scanning transmission electron microscopy (STEM) and TEM-CBED modes under the two-beam condition. The log-ratio method was used for measuring the thin foil thickness. Kossel-Möllenstedt (K-M) fringe of the [Formula: see text] diffracted disk of austenite was analyzed to evaluate the thickness. The results prove the good coherency between both methods in the thickness range of 72 ~ 113 nm with a difference of less than 5%.

6.
ACS Nano ; 13(8): 9607-9619, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31380622

RESUMEN

Silicon-based materials are the most promising candidates to surpass the capacity limitation of conventional graphite anode for lithium ion batteries. Unfortunately, Si-based materials suffer from poor cycling performance and dimensional instability induced by the large volume changes during cycling. To resolve such problems, nanostructured silicon-based materials with delicately controlled microstructure and interfaces have been intensively investigated. Nevertheless, they still face problems related to their high synthetic cost and their limited electrochemical properties and thermal stability. To overcome these drawbacks, we demonstrate the strategic design and synthesis of a gyroid three-dimensional network in a Si@SiOx/C nanoarchitecture (3D-Si@SiOx/C) with synergetic interaction between the computational prediction and the synthetic optimization. This 3D-Si@SiOx/C exhibits not only excellent electrochemical performance due to its structural stability and superior ion/electron transport but also enhanced thermal stability due to the presence of carbon, which was formed by a cost-effective one-pot synthetic route. We believe that our rationally designed 3D-Si@SiOx/C will lead to the development of anode materials for the next-generation lithium ion batteries.

7.
Sci Rep ; 9(1): 894, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696845

RESUMEN

Bimetallic nanoparticles (NPs) have aroused interest in various fields because of their synergetic and unique properties. Among those nanoparticles, we strategically approached and synthesized Au@Pt NPs via the sonochemical method with different molar ratios (e.g. 3:7, 5:5, and 7:3) of Au to Pt precursors. The particle structure was confirmed to be core-shell, and the size was estimated to be 60, 52, and 47 nm, respectively, for 3:7, 5:5, and 7:3 ratios of Au to Pt. The detailed structure and crystallinity of as-prepared Au@Pt NPs were further studied by scanning electron microscopy, transmission electron microscopy with element mapping, and X-ray diffraction. It should be noted that thickness of the dendritic Pt shell in the core-shell structure can be easily tuned by controlling the molar ratio of Au to Pt. To explore the possibility of this material as glucose sensor, we confirmed the detection of glucose using amperometry. Two dynamic ranges in a calibration plot were displayed at 0.5-50.0 µM and 0.05-10.0 mM, and their detection limit as glucose sensor was determined to be 319.8 (±5.4) nM.

8.
Chem Asian J ; 12(1): 21-26, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27911052

RESUMEN

Dendritic platinum nanoparticles (DPNs) have been synthesized from l-ascorbic acid and an amphiphilic non-ionic surfactant (Brij-58) via a sonochemical method. The particle size and shape of the DPNs could be tuned by changing the reduction temperature, resulting in a uniform DPN with a size of 23 nm or 60 nm. The facets of DPNs have been studied by high-resolution transmission electron microscopy. The cytotoxicity of DPNs has been investigated using human embryonic kidney cells (HEK-293), and the biological adaptability exhibited by DPNs has opened a pathway to biomedical applications such as drug-delivery systems, photothermal treatment, and biosensors.


Asunto(s)
Dendrímeros/farmacología , Nanopartículas del Metal/química , Platino (Metal)/farmacología , Ácido Ascórbico/química , Técnicas Biosensibles , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dendrímeros/química , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Células HEK293 , Humanos , Tamaño de la Partícula , Fototerapia , Platino (Metal)/química , Relación Estructura-Actividad , Propiedades de Superficie , Tensoactivos/química
9.
Phys Chem Chem Phys ; 17(11): 7208-13, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25690882

RESUMEN

Poor dye loading on rutile TiO2 is one of the chief reasons for lower solar-to-electric conversion efficiency (η) in dye-sensitized solar cells (DSCs), compared to their anatase based counterparts. Previously, we showed that similar light harvesting for both rutile and anatase was realized by using a metal-free organic indoline dye, D149 [Sci. Rep., 2014, 4, 5769]. This was in contrast to the bulk of previous studies, which employed ruthenium based N719, leading to significant differences in light harvesting. To date, there has been no report directly comparing N719 and D149 for rutile based DSCs. In this work, three-dimensional hierarchical rutile TiO2 architecture (HRTA), consisting of one-dimensional nanorods, was successfully prepared via a facile hydrothermal method, and subsequently optimized as effective photoelectrodes for DSCs. Two dyes, N719 and D149, were used as sensitizers of the HRTA-based DSCs, with maximum η of 5.6% and 5.8% achieved, respectively. The higher η of the D149-sensitized DSC is ascribed to its higher extinction co-efficient, allowing a greater amount of light to be harvested with a thinner TiO2 layer. This study suggests that some of the limitations typically observed for rutile TiO2 based DSCs can be overcome through the use of strongly absorbing metal-free organic sensitizers. Furthermore, it reemphasises the importance of viewing DSCs as whole systems, rather than individual components.

10.
Sci Rep ; 4: 5769, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25167837

RESUMEN

Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.

11.
ChemSusChem ; 7(5): 1451-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24700792

RESUMEN

One-dimensional nanomaterials have short Li(+) diffusion paths and promising structural stability, which results in a long cycle life during Li(+) insertion and extraction processes in lithium rechargeable batteries. In this study, we fabricated one-dimensional spinel Li4Ti5O12 (LTO) nanofibers using an electrospinning technique and studied the Zr(4+) doping effect on the lattice, electronic structure, and resultant electrochemical properties of Li-ion batteries (LIBs). Accommodating a small fraction of Zr(4+) ions in the Ti(4+) sites of the LTO structure gave rise to enhanced LIB performance, which was due to structural distortion through an increase in the average lattice constant and thereby enlarged Li(+) diffusion paths rather than changes to the electronic structure. Insulating ZrO2 nanoparticles present between the LTO grains due to the low Zr(4+) solubility had a negative effect on the Li(+) extraction capacity, however. These results could provide key design elements for LTO anodes based on atomic level insights that can pave the way to an optimal protocol to achieve particular functionalities.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Nanofibras/química , Titanio/química , Circonio/química , Técnicas Electroquímicas , Electrodos
12.
Sci Rep ; 4: 4744, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24752189

RESUMEN

Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 µm thick SmBa2Cu3O7--δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1,000 A/cm-width for the entire 22 meter long wire and maximum Ic over 1,500 A/cm-width for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor.

13.
Nanoscale ; 6(2): 1005-10, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24292268

RESUMEN

A nano-Si/FeSi2Ti hetero-structure has been synthesized for highly reversible Li-ion batteries by using a simple melt-spinning method. We demonstrate that this composite has a very peculiar core/shell structure in which the FeSi2Ti alloy plays various pivotal roles as a mechanically supporting backbone and as an electronic pathway for the active Si attached to its surface, and is responsible for the altered electrochemical reactions with relatively small volume expansion routes. The FeSi2Ti matrix significantly contributes to not only the stabilization of cyclic retention, but also the enhancement of conductivity, as well as a high rate capability unprecedented in research on Si-based anodes. This achievement demonstrates the potency of this novel hybrid design for electrode materials for energy storage.

14.
Phys Chem Chem Phys ; 15(46): 20075-9, 2013 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-24154608

RESUMEN

We here report on very high capacity (11,000 mA h g(-1)), superb rate capability (4500 mA h g(-1) at 5000 mA g(-1)) and high reversibility of Li-air batteries using α-MnO2 NW catalysts mainly associated with their relatively large amount of Mn(3+) exposed on the NW surface and a unique mechanism for deposition of discharge products. Our findings of the unprecedentedly fast Li ion transport and reversible formation-decomposition of discharge products attributed to the modified surface arrangement of α-MnO2 NWs suggest a strategy for achieving high-power Li-air batteries in combination with nano-architecture tailoring.

15.
ACS Appl Mater Interfaces ; 5(3): 691-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23305151

RESUMEN

The morphology and electronic structure of metal oxides, including TiO(2) on the nanoscale, definitely determine their electronic or electrochemical properties, especially those relevant to application in energy devices. For this purpose, a concept for controlling the morphology and electrical conductivity in TiO(2), based on tuning by electrospinning, is proposed. We found that the 1D TiO(2) nanofibers surprisingly gave higher cyclic retention than 0D nanopowder, and nitrogen doping in the form of TiO(2)N(x) also caused further improvement. This is due to higher conductivity and faster Li(+) diffusion, as confirmed by electrochemical impedance spectra. Our findings provide an effective and scalable solution for energy storage efficiency.

17.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S135-40, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20551447

RESUMEN

The discontinuous reaction of the Ni(2)MnAl intermetallic phase was investigated during the aging of a solution-treated Fe-8.3Mn-8.2Ni-4.2Al alloy. During aging, Ni(2)MnAl lamellae formed at the prior austenite grain boundaries and twin boundaries and grew into the neighboring grains. The presence of continuously precipitated fine Ni(2)MnAl particles before the growth of the discontinuously precipitated lamellae was confirmed by dark-field transmission electron microscopy, and it was concluded that the present reaction is a type of discontinuous coarsening process, alpha' + Ni(2)MnAl (continuous precipitation) --> alpha + Ni(2)MnAl (discontinuous coarsening). The chemical driving force and the reduction of the total coherent strain energy were suggested to be the driving force for the discontinuous coarsening reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA