Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AMB Express ; 13(1): 51, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243871

RESUMEN

The complex regulatory network in Bacillus, known as quorum sensing, offers many opportunities to modify bacterial gene expression and hence to control bioprocesses. One target regulated by this mechanism is the activity of the PsrfA promoter, which is engaged in the formation of lipopeptide surfactin. It was hypothesised that deletion of rapC, rapF and rapH, encoding for prominent Rap-phosphatases known to affect PsrfA activity, would enhance surfactin production. Therefore, these genes were deleted in a sfp+ derivative of B. subtilis 168 with subsequent evaluation of quantitative data. Up to the maximum product formation of the reference strain B. subtilis KM1016 after 16 h of cultivation, the titers of the rap deletion mutants did not exceed the reference. However, an increase in both product yield per biomass YP/X and specific surfactin productivity qsurfactin was observed, without any considerable effect on the ComX activity. By extending the cultivation time, a 2.7-fold increase in surfactin titer was observed after 24 h for strain CT10 (ΔrapC) and a 2.5-fold increase for CT11 (ΔrapF) compared to the reference strain KM1016. In addition, YP/X was again increased for strains CT10 and CT11, with values of 1.33 g/g and 1.13 g/g, respectively. Interestingly, the effect on surfactin titer in strain CT12 (ΔrapH) was not as distinct, although it achieved the highest promoter activity (PsrfA-lacZ). The data presented support the possibility of involving the quorum sensing system of Bacillus in bioprocess control as shown here on the example of lipopeptide production.

2.
Front Bioeng Biotechnol ; 8: 554903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324620

RESUMEN

The anaerobic growth of B. subtilis to synthesize surfactin poses an alternative strategy to conventional aerobic cultivations. In general, the strong foam formation observed during aerobic processes represents a major obstacle. Anaerobic processes have, amongst others, the distinct advantage that the total bioreactor volume can be exploited as foaming does not occur. Recent studies also reported on promising product per biomass yields. However, anaerobic growth in comparison to aerobic processes has several disadvantages. For example, the overall titers are comparably low and cultivations are time-consuming due to low growth rates. B. subtilis JABs24, a derivate of strain 168 with the ability to synthesize surfactin, was used as model strain in this study. Ammonium and nitrite were hypothesized to negatively influence anaerobic growth. Ammonium with initial concentrations up to 0.2 mol/L was shown to have no significant impact on growth, but increasing concentrations resulted in decreased surfactin titers and reduced nitrate reductase expression. Anaerobic cultivations spiked with increasing nitrite concentrations resulted in prolonged lag-phases. Indeed, growth rates were in a similar range after the lag-phase indicating that nitrite has a neglectable effect on the observed decreasing growth rates. In bioreactor cultivations, the specific growth rate decreased with increasing glucose concentrations during the time course of both batch and fed-batch processes to less than 0.05 1/h. In addition, surfactin titers, overall Y P/X and Y P/S were 53%, ∼42%, and ∼57% lower than in serum flask with 0.190 g/L, 0.344 g/g and 0.015 g/g. The Y X/S, on the contrary, was 30% lower in the serum flask with 0.044 g/g. The productivities q were similar with ∼0.005 g/(g⋅h). However, acetate strongly accumulated during cultivation and was posed as further metabolite that might negatively influence anaerobic growth. Acetate added to anaerobic cultivations in a range from 0 g/L up to 10 g/L resulted in a reduced maximum and overall growth rate µ by 44% and 30%, respectively. To conclude, acetate was identified as a promising target for future process enhancement and strain engineering. Though, the current study demonstrates that the anaerobic cultivation to synthesize surfactin represents a reasonable perspective and feasible alternative to conventional processes.

3.
Plasmid ; 82: 35-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26455535

RESUMEN

Bacillus subtilis is a widely used bacterium for production of heterologous and homologous proteins. The primary challenge in the production of proteins in B. subtilis is choosing a relevant expression system. In this study, we developed a robust expression system based on optimized PtetR of transposon Tn1721, which is repressible by its specific repressor, TetR. The first step of this work was focused on the optimization of structure and core elements of Tn1721 anhydrotetracycline-inducible promoters, PtetA and PtetR. Both promoters were inserted upstream of eGFP on a pUB110-derivative with high copy number. Reduction of the 18 bp spacer region of both PtetA and PtetR to 17 bp significantly increased their strength in B. subtilis. Nevertheless, only the optimized PtetR with 17 bp spacer region (PtetR2) directed high level of eGFP expression. In the second step, regulation of the system was optimized by testing the expression of tetR using well-known promoters, such as PmtlA, PmtlR, PptsG and PpenP. Expression of tetR by PptsG resulted in a tight regulation of PtetR2-eGFP showing 44-fold induction. By using the final expression plasmid in B. subtilis, neopullulanase was produced up to 15% of the total soluble protein.


Asunto(s)
Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica/genética , Glicósido Hidrolasas/biosíntesis , Tetraciclinas/biosíntesis , Antiportadores/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Elementos Transponibles de ADN/genética , Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Datos de Secuencia Molecular , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Transactivadores/genética
4.
Microbiology (Reading) ; 160(Pt 1): 91-101, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24196428

RESUMEN

Expression of mannitol utilization genes in Bacillus subtilis is directed by PmtlA, the promoter of the mtlAFD operon, and PmtlR, the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIB(Gat)-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates PmtlA in vivo. In the mtlR-H342D C419A mutant, PmtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled PmtlA and PmtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of PmtlA-PlicB hybrid promoters, as well as increasing the distance between the MtlR operator and the -35 box of PmtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at PmtlA and PmtlR during transcription initiation.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica , Manitol/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Activación Transcripcional , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Factores de Transcripción/genética
5.
Microb Cell Fact ; 10: 83, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22014119

RESUMEN

BACKGROUND: Several vector systems have been developed to express any gene desired to be studied in Bacillus subtilis. Among them, the transcriptionally regulated promoters involved in carbohydrate utilization are a research priority. Expression systems based on Bacillus promoters for xylose, maltose, and mannose utilization, as well as on the heterologous E. coli lactose promoter, have been successfully constructed. The promoter of the mtlAFD operon for utilization of mannitol is another promising candidate for its use in expression vectors. In this study, we investigated the regulation of the mtl genes in order to identify the elements needed to construct a strong mannitol inducible expression system in B. subtilis. RESULTS: Regulation of the promoters of mtlAFD operon (P(mtlA)) and mtlR (P(mtlR)) encoding the activator were investigated by fusion to lacZ. Identification of the P(mtlA) and P(mtlR) transcription start sites revealed the σ(A) like promoter structures. Also, the operator of P(mtlA) was determined by shortening, nucleotide exchange, and alignment of P(mtlA) and P(mtlR) operator regions. Deletion of the mannitol-specific PTS genes (mtlAF) resulted in P(mtlA) constitutive expression demonstrating the inhibitory effect of EIICB(Mtl) and EIIA(Mtl) on MtlR in the absence of mannitol. Disruption of mtlD made the cells sensitive to mannitol and glucitol. Both P(mtlA) and P(mtlR) were influenced by carbon catabolite repression (CCR). However, a CcpA deficient mutant showed only a slight reduction in P(mtlR) catabolite repression. Similarly, using P(groE) as a constitutive promoter, putative cre sites of P(mtlA) and P(mtlR) slightly reduced the promoter activity in the presence of glucose. In contrast, glucose repression of P(mtlA) and P(mtlR) was completely abolished in a ΔptsG mutant and significantly reduced in a MtlR (H342D) mutant. CONCLUSIONS: The mtl operon promoter (P(mtlA)) is a strong promoter that reached a maximum of 13,000 Miller units with lacZ as a reporter on low copy plasmids. It is tightly regulated by just one copy of the mtlR gene on the chromosome and subject to CCR. CCR can be switched off by mutations in MtlR and the glucose transporter. These properties and the low costs of the inducers, i.e. mannitol and glucitol, make the promoter ideal for designing regulated expression systems.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras Genéticas , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Expresión Génica , Genes Reporteros , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Datos de Secuencia Molecular , Sitio de Iniciación de la Transcripción , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
6.
Pak J Biol Sci ; 11(5): 740-5, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18819570

RESUMEN

Lipase production in an indigenous lipolytic Bacillus sp. was detected in media containing Tributyrin-Tween 80 and Rhodamine B-Olive oil. The statistical Taguchi model was used to predict the optimum experimental conditions for bacterial growth and lipase production. Partial optimization was carried out for selection of salt base, oil, glucose, NH4Cl and yeast extract concentrations, inoculum density, pH and agitation. Maximum lipase activity was detected in the cell free supernatants of cultures grown in a medium containing 10 g L(-1) yeast extract, 15 g L(-1) NH4Cl, 3 g L(-1) K2HPO4, 1 g L(-1) KH2PO4, 0.1 g L(-1) MgSO4 x 7H2O, 2 g L(-1) glucose, 0.6 mM MgCl2 and 15 ml L(-1) olive oil, pH 8.5 at 30 degrees C for 24 h and low agitation. The amount oflipase produced in the designed medium was in agreement with the predicted values by the statistical method. 16S rRNA cloning and sequencing identified the test organism as Bacillus pumilus.


Asunto(s)
Bacillus/enzimología , Microbiología Industrial/métodos , Lipasa/química , Lipasa/fisiología , ARN Ribosómico 16S/química , Microbiología del Suelo , Sistema Libre de Células , Clonación Molecular , Medios de Cultivo , Concentración de Iones de Hidrógeno , Aceite de Oliva , Aceites de Plantas/química , Rodaminas/química , Sales (Química)/química , Análisis de Secuencia de ARN , Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...