Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113421, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37952154

RESUMEN

We explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells. We validate these networks, demonstrating dynamic changes both in expression and predicted binding sites of transcription factors (TFs) during organoid differentiation. We identify known regulators of hair cell development, Atoh1, Pou4f3, and Gfi1, and the analysis predicts the regulatory factors Tcf4, an E-protein and heterodimerization partner of Atoh1, and Ddit3, a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt-signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for hair cell (HC) regeneration, which is limited in the adult.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cóclea , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Organoides/metabolismo , Mamíferos/metabolismo
2.
Sci Adv ; 9(45): eadf6251, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939194

RESUMEN

The development and diversity of neuronal subtypes in the human hypothalamus has been insufficiently characterized. To address this, we integrated transcriptomic data from 241,096 cells (126,840 newly generated) in the prenatal and adult human hypothalamus to reveal a temporal trajectory from proliferative stem cell populations to mature hypothalamic cell types. Iterative clustering of the adult neurons identified 108 robust transcriptionally distinct neuronal subtypes representing 10 hypothalamic nuclei. Pseudotime trajectories provided insights into the genes driving formation of these nuclei. Comparisons to single-cell transcriptomic data from the mouse hypothalamus suggested extensive conservation of neuronal subtypes despite certain differences in species-enriched gene expression. The uniqueness of hypothalamic neuronal lineages was examined developmentally by comparing excitatory lineages present in cortex and inhibitory lineages in ganglionic eminence, revealing both distinct and shared drivers of neuronal maturation across the human forebrain. These results provide a comprehensive transcriptomic view of human hypothalamus development through gestation and adulthood at cellular resolution.


Asunto(s)
Hipotálamo , Neuronas , Ratones , Animales , Humanos , Hipotálamo/metabolismo , Neuronas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Genómica
3.
Sci Transl Med ; 15(721): eade1283, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37824600

RESUMEN

Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.


Asunto(s)
Cerebelo , Neuronas , Preescolar , Humanos , Cerebelo/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Genómica , Inflamación/metabolismo
4.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945543

RESUMEN

A large number of genomic and imaging datasets are being produced by consortia that seek to characterize healthy and disease tissues at single-cell resolution. While much effort has been devoted to capturing information related to biospecimen information and experimental procedures, the metadata standards that describe data matrices and the analysis workflows that produced them are relatively lacking. Detailed metadata schema related to data analysis are needed to facilitate sharing and interoperability across groups and to promote data provenance for reproducibility. To address this need, we developed the Matrix and Analysis Metadata Standards (MAMS) to serve as a resource for data coordinating centers and tool developers. We first curated several simple and complex "use cases" to characterize the types of feature-observation matrices (FOMs), annotations, and analysis metadata produced in different workflows. Based on these use cases, metadata fields were defined to describe the data contained within each matrix including those related to processing, modality, and subsets. Suggested terms were created for the majority of fields to aid in harmonization of metadata terms across groups. Additional provenance metadata fields were also defined to describe the software and workflows that produced each FOM. Finally, we developed a simple list-like schema that can be used to store MAMS information and implemented in multiple formats. Overall, MAMS can be used as a guide to harmonize analysis-related metadata which will ultimately facilitate integration of datasets across tools and consortia. MAMS specifications, use cases, and examples can be found at https://github.com/single-cell-mams/mams/.

5.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318260

RESUMEN

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Asunto(s)
Encéfalo , Bases de Datos Genéticas , Epigenómica , Multiómica , Transcriptoma , Animales , Ratones , Genómica , Mamíferos , Primates , Encéfalo/citología , Encéfalo/metabolismo
7.
Nature ; 598(7879): 111-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616062

RESUMEN

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Asunto(s)
Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Animales , Atlas como Asunto , Callithrix/genética , Epigénesis Genética , Epigenómica , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Persona de Mediana Edad , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Filogenia , Especificidad de la Especie , Transcriptoma
8.
Nature ; 598(7879): 103-110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616066

RESUMEN

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Asunto(s)
Epigenómica , Perfilación de la Expresión Génica , Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Transcriptoma , Animales , Atlas como Asunto , Conjuntos de Datos como Asunto , Epigénesis Genética , Femenino , Masculino , Ratones , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Reproducibilidad de los Resultados
9.
J Neurosci ; 41(25): 5534-5552, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34011527

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon 1 of the huntingtin (HTT) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-specific disease processes, we studied the nuclear transcriptomes of 4524 cells from the striatum of a genetically precise knock-in mouse model of the HD mutation, HttQ175/+, and from wild-type controls. We used 14- to 15-month-old male mice, a time point at which multiple behavioral, neuroanatomical, and neurophysiological changes are present but at which there is no known cell death. Thousands of differentially expressed genes (DEGs) were distributed across most striatal cell types, including transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell type-specific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types. Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the polycomb repressive complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity across virtually all cell types in the adult striatum.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by specific loss of medium spiny neurons (MSNs) in the striatum, accompanied by more subtle changes in many other cell types. It is thought that changes in transcriptional regulation are an important underlying mechanism, but cell type-specific gene expression changes are not well understood, particularly at time points relevant to the onset of disease-related symptoms. Single-nucleus (sn)RNA-seq in a genetically precise mouse model enabled us to identify novel patterns of transcriptional dysregulation because of HD mutations, including bidirectional dysregulation of many cell type identity genes that may be driven by partial loss-of-function of the polycomb repressive complex (PRC). Identifying these regulators of transcriptional dysregulation in HD can be leveraged to design novel disease-modifying therapeutics.


Asunto(s)
Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Neuronas/patología , Complejo Represivo Polycomb 2/metabolismo , Animales , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , RNA-Seq
10.
PLoS Genet ; 16(9): e1009025, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986727

RESUMEN

Age-related hearing impairment (ARHI), one of the most common medical conditions, is strongly heritable, yet its genetic causes remain largely unknown. We conducted a meta-analysis of GWAS summary statistics from multiple hearing-related traits in the UK Biobank (n = up to 330,759) and identified 31 genome-wide significant risk loci for self-reported hearing difficulty (p < 5x10-8), of which eight have not been reported previously in the peer-reviewed literature. We investigated the regulatory and cell specific expression for these loci by generating mRNA-seq, ATAC-seq, and single-cell RNA-seq from cells in the mouse cochlea. Risk-associated genes were most strongly enriched for expression in cochlear epithelial cells, as well as for genes related to sensory perception and known Mendelian deafness genes, supporting their relevance to auditory function. Regions of the human genome homologous to open chromatin in epithelial cells from the mouse were strongly enriched for heritable risk for hearing difficulty, even after adjusting for baseline effects of evolutionary conservation and cell-type non-specific regulatory regions. Epigenomic and statistical fine-mapping most strongly supported 50 putative risk genes. Of these, 39 were expressed robustly in mouse cochlea and 16 were enriched specifically in sensory hair cells. These results reveal new risk loci and risk genes for hearing difficulty and suggest an important role for altered gene regulation in the cochlear sensory epithelium.


Asunto(s)
Cóclea/citología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Adulto , Animales , Bancos de Muestras Biológicas , Cromatina/genética , Estudios de Cohortes , Epigenoma , Células Epiteliales/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Humanos , Ratones Endogámicos ICR , Ratones Endogámicos , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual , Reino Unido
11.
BMC Genomics ; 19(1): 216, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29580210

RESUMEN

BACKGROUND: Aggression is influenced by individual variation in temperament as well as behavioral plasticity in response to adversity. DNA methylation is stably maintained over time, but also reversible in response to specific environmental conditions, and may thus be a neuromolecular regulator of both of these processes. A previous study reported DNA methylation differences between aggressive Africanized and gentle European honey bees. We investigated whether threat-induced aggression altered DNA methylation profiles in the honey bee brain in response to a behavioral stimulus (aggression-provoking intruder bee or inert control). We sampled five minutes and two hours after stimulus exposure to examine the effect of time on epigenetic profiles of aggression. RESULTS: There were DNA methylation differences between aggressive and control bees for individual cytosine-guanine dinucleotides (CpGs) across the genome. Eighteen individual CpG sites showed significant difference between aggressive and control bees 120 min post stimulus. For clusters of CpGs, we report four genomic regions differentially methylated between aggressive and control bees at the 5-min time point, and 50 regions differentially methylated at the120-minute time point following intruder exposure. Differential methylation occurred at genes involved in neural plasticity, chromatin remodeling and hormone signaling. Additionally, there was a significant overlap of differential methylation with previously published epigenetic differences that distinguish aggressive Africanized and gentle European honey bees, suggesting an evolutionarily conserved use of brain DNA methylation in the regulation of aggression. Lastly, we identified individually statistically suggestive CpGs that as a group were significantly associated with differentially expressed genes underlying aggressive behavior and also co-localize with binding sites of transcription factors involved in neuroplasticity or neurodevelopment. CONCLUSIONS: There were DNA methylation differences in the brain associated with response to an intruder. These differences increased in number a few hours after the initial exposure and overlap with previously reported aggression-associated genes and neurobiologically relevant transcription factor binding sites. Many DNA methylation differences that occurred in association with the expression of aggression in real time also exist between Africanized bees and European bees, suggesting an evolutionarily conserved role for epigenetic regulation in aggressive behavior.


Asunto(s)
Abejas/fisiología , Proteínas de Insectos/genética , Agresión , Animales , Abejas/genética , Conducta Animal , Evolución Biológica , Encéfalo/fisiología , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Genoma , Territorialidad
12.
Front Genet ; 5: 321, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309578

RESUMEN

Epigenetic modifications produce distinct phenotypes from the same genome through genome-wide transcriptional control. Recently, DNA methylation in honeybees and histone modifications in ants were found to assist the formation of caste phenotypes during development and adulthood. This insight allows us to revisit one of Darwin's greatest challenges to his natural selection theory; the derivation of multiple forms of sterile workers within eusocial species. Differential feeding of larvae creates two distinct developmental paths between queens and workers, with workers further refined by pheromone cues. Flexible epigenetic control provides a mechanism to interpret the milieu of social cues that create distinct worker sub-caste phenotypes. Recent findings suggest a distinct use for DNA methylation before and after adult emergence. Further, a comparison of genes that are differentially methylated and transcriptionally altered upon pheromone signaling suggests that epigenetics can play a key role in mediating pheromone signals to derive sub-caste phenotypes. Epigenetic modifications may provide a molecular mechanism to Darwin's "special difficulty" and explain the emergence of multiple sub-phenotypes among sterile individuals.

13.
Nat Neurosci ; 15(10): 1371-3, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22983211

RESUMEN

In honeybee societies, distinct caste phenotypes are created from the same genotype, suggesting a role for epigenetics in deriving these behaviorally different phenotypes. We found no differences in DNA methylation between irreversible worker and queen castes, but substantial differences between nurses and forager subcastes. Reverting foragers back to nurses reestablished methylation levels for a majority of genes and provides, to the best of our knowledge, the first evidence in any organism of reversible epigenetic changes associated with behavior.


Asunto(s)
Conducta Animal/fisiología , Metilación de ADN/fisiología , Epigenómica , Animales , Abejas/genética , Metilación de ADN/genética , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...