Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(2): 466-478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38406847

RESUMEN

A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.


Asunto(s)
Hojas de la Planta , Populus , Sequías , Xilema , Transpiración de Plantas , Agua , Árboles
2.
J Exp Bot ; 73(11): 3699-3710, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176148

RESUMEN

Acoustic emission analysis is promising to investigate the physiological events leading to drought-induced injury and mortality. However, their nature and source are not fully understood, making this technique difficult to use as a direct measure of the loss of xylem hydraulic conductance. Acoustic emissions were recorded during severe dehydration in lavender plants (Lavandula angustifolia) and compared with the dynamics of embolism development and cell damage. The timing and characteristics of acoustic signals from two independent recording systems were compared by principal component analysis (PCA). Changes in water potential, branch diameter, loss of hydraulic conductance, and cellular damage were also measured to quantify drought-induced damages. Two distinct phases of acoustic emissions were observed during dehydration: the first one associated with a rapid loss of diameter and a significant increase in loss of xylem conductance (90%), and the second with slower changes in diameter and a significant increase in cellular damage. Based on PCA, a developed algorithm discriminated hydraulic-related acoustic signals from other sources, proposing a reconstruction of hydraulic vulnerability curves. Cellular damage preceded by hydraulic failure seems to lead to a lack of recovery. The second acoustic phase would allow detection of plant mortality.


Asunto(s)
Embolia , Lavandula , Acústica , Deshidratación , Agua/fisiología , Xilema/fisiología
3.
Trends Plant Sci ; 27(4): 335-345, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34772610

RESUMEN

Xylem hydraulic failure has been recognized as a pervasive factor in the triggering of drought-induced tree mortality. However, foundational evidence of the mechanistic link connecting hydraulic failure with living cell damage and tree death has not been identified yet, compromising our ability to predict mortality events. Meristematic cells are involved in the recovery of trees from drought, and focusing on their vitality and functionality after a drought event could provide novel information on the mechanistic link between hydraulic failure and drought-induced tree mortality. In this Opinion, we focus on the cell's critical hydration status for tree recovery from drought and how it links with the membrane integrity of the meristems.


Asunto(s)
Árboles , Agua , Sequías , Hojas de la Planta/metabolismo , Árboles/metabolismo , Agua/metabolismo , Xilema/metabolismo
4.
Ann Bot ; 129(3): 343-356, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34918027

RESUMEN

BACKGROUND AND AIMS: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS: We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS: We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS: Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.


Asunto(s)
Arabidopsis , Aclimatación , Adaptación Fisiológica , Arabidopsis/genética , Nitrógeno , Fenotipo
5.
Tree Physiol ; 41(11): 2008-2021, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34259313

RESUMEN

The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (~160 h) compared with well-watered plants (~50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.


Asunto(s)
Sequías , Populus , Aclimatación , Hojas de la Planta/fisiología , Populus/fisiología , Árboles/fisiología
6.
Front Plant Sci ; 12: 634237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897725

RESUMEN

Nutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abiotic stress is based on the grafting of a rootstock and a scion of economic interest. Scion tolerance may be improved by a tetraploid rootstock. The purpose of this study was to highlight if tolerance of a common clementine scion (C) (Citrus clementina Hort. ex Tan) to nutrient deficiency could be improved by several diploid (2×) and their tetraploid (4×) counterparts citrus genotypes commonly used as rootstocks: Trifoliate orange × Cleopatra mandarin (C/PMC2x and C/PMC4x), Carrizo citrange (C/CC2x and C/CC4x), Citrumelo 4475 (C/CM2x and C/CM4x). The allotetraploid FlhorAG1 (C/FL4x) was also included in the experimental design. The impact of nutrient deficiency on these seven scion/rootstock combinations was evaluated at root and leaf levels by investigating anatomical parameters, photosynthetic properties and oxidative and antioxidant metabolism. Nutrient deficiency affects foliar tissues, physiological parameters and oxidative metabolism in leaves and roots in different ways depending on the rootstock genotype and ploidy level. The best known nutrient deficiency-tolerant common clementine scions were grafted with the doubled diploid Citrumelo 4475 (C/CM4x) and the allotetraploid FlhorAG1 (C/FL4x). These combinations were found to have less foliar damage, fewer changes of photosynthetic processes [leaf net photosynthetic rate (P net ), stomatal conductance (g s ), transpiration (E), maximum quantum efficiency of PSII (F v /F m ), electron transport rate (ETR), ETR/P net ], and effective quantum yield of PSII [Y(II)], less malondialdehyde accumulation in leaves and better functional enzymatic and non-enzymatic antioxidant systems. Common clementine scions grafted on other 4× rootstocks did not show better tolerance than those grafted on their 2× counterparts. Chromosome doubling of rootstocks did not systematically improve the tolerance of the common clementine scion to nutrient deficiency.

7.
Sci Rep ; 11(1): 8902, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903646

RESUMEN

Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype.

8.
Plant Physiol Biochem ; 162: 762-775, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33812345

RESUMEN

Polyploidy plays a major role in citrus plant breeding to improve the adaptation of polyploid rootstocks as well as scions to adverse conditions and to enhance agronomic characteristics. In Citrus breeding programs, triploidy could be a useful tool to react to environmental issues and consumer demands because the produced fruits are seedless. In this study, we compared the physiological, biochemical, morphological, and ultrastructural responses to water deficit of triploid and diploid citrus varieties obtained from 'Fortune' mandarin and 'Ellendale' tangor hybridization. One diploid clementine tree was included and used as a reference. All studied scions were grafted on C-35 citrange rootstock. Triploidy decreased stomatal density and increased stomata size. The number of chloroplasts increased in 3x varieties. These cytological properties may explain the greater photosynthetic capacity (Pnet, gs, Fv/Fm) and enhanced water-holding capacity (RWC, proline). In addition, reduced degradation of ultrastructural organelles (chloroplasts and mitochondria) and thylakoids accompanied by less photosynthetic activity and low oxidative damages were found in 3x varieties. Triploid varieties, especially T40-3x, had a better ability to limit water loss and dissipate excess energy (NPQ) to protect photosystems. Higher starch reserves in 3x varieties suggest a better carbon and energy supply and increases in plastoglobuli size suggest less oxidative damage (H2O2, MDA), especially in T40-3x, and preservation of photosynthetic apparatus. Taken together, our results suggest that desirable cytological and ultrastructural traits induced by triploidy improve water stress response and could be a useful stress marker during environmental constraints.


Asunto(s)
Citrus , Triploidía , Citrus/genética , Peróxido de Hidrógeno , Fitomejoramiento , Agua
9.
Tree Physiol ; 41(8): 1384-1399, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33554260

RESUMEN

Knowledge on variations of drought resistance traits are needed to predict the potential of trees to acclimate to coming severe drought events. Xylem vulnerability to embolism is a key parameter related to such droughts, and its phenotypic variability relies mainly on environmental plasticity. We investigated the structural determinants controlling the plasticity of vulnerability to embolism, focusing on the key elements involved in the air bubble entry in vessels, especially the intervessel pits. Poplar saplings (Populus tremula x alba (Aiton) Sm., 1804) grown in contrasted water availability or light exposure exhibited differences in the vulnerability to embolism (P50) in a range of 0.76 MPa. We then characterized the structural changes in features related to pit quantity and pit structure, from the pit ultrastructure to the organization of xylem vessels, using different microscopy techniques (transmission electron microscopy, scanning electron microscopy, light microscopy). A multispectral combination of X-ray microtomography and light microscopy analysis allowed measuring the vulnerability of each single vessel and testing some of the relationships between structural traits and vulnerability to embolism inside the xylem. The pit ultrastructure did not change, whereas the vessel dimensions increased with the vulnerability to embolism and the grouping index and fraction of intervessel cell wall both decreased with the vulnerability to embolism. These findings hold when comparing between trees or between the vessels inside the xylem of an individual tree. These results evidenced that plasticity of vulnerability to embolism in hybrid poplar occurs through changes in the pit quantity properties such as pit area and vessel grouping rather than changes on the pit structure.


Asunto(s)
Embolia , Populus , Pared Celular , Sequías , Agua , Xilema
10.
Front Plant Sci ; 11: 330, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391024

RESUMEN

Low temperatures during winter are one of the main constraints for citrus crop. Polyploid rootstocks can be used for improving tolerance to abiotic stresses, such as cold stress. Because the produced fruit are seedless, using triploid scions is one of the most promising approaches to satisfy consumer expectations. In this study, we evaluated how the triploidy of new citrus varieties influences their sensitivity to natural chilling temperatures. We compared their behavior to that of diploid citrus, their parents (Fortune mandarin and Ellendale tangor), and one diploid clementine tree, as reference, focusing on photosynthesis parameters, oxidative metabolism, and volatile organic compounds (VOC) in leaves. Triploid varieties appeared to be more tolerant than diploid ones to natural low temperatures, as evidenced by better photosynthetic properties (Pnet, gs, Fv/Fm , ETR/P net ratio), without relying on a better antioxidant system. The VOC levels were not influenced by chilling temperatures; however, they were affected by the ploidy level and atypical chemotypes were found in triploid varieties, with the highest proportions of E-ß-ocimene and linalool. Such compounds may contribute to better stress adaptation.

11.
Plant Physiol ; 183(4): 1638-1649, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32404411

RESUMEN

In the context of climate change, determining the physiological mechanisms of drought-induced mortality in woody plants and identifying thresholds of drought survivorship will improve forecasts of forest and agroecosystem die-off. Here, we tested whether continuous measurements of branch diameter variation can be used to identify thresholds of hydraulic failure and physiological recoverability in lavender (Lavandula angustifolia and Lavandula × intermedia) plants exposed to severe drought. Two parameters of branch diameter variation were tested: the percentage loss of diameter and the percentage loss of rehydration capacity. In two greenhouse experiments with different growth conditions, we monitored variation in branch diameter in the two lavender species exposed to a series of drought/rewatering cycles that varied in drought-stress intensity. Water potential, stomatal conductance, loss of xylem hydraulic conductance, and electrolyte leakage were also measured. We observed that plants were not able to recover when percentage loss of diameter reached maximum values of 21.3% ± 0.6% during drought, regardless of species and growth conditions. A percentage loss of rehydration capacity of 100% was defined as the point of no recovery, and was observed with high levels of cellular damage as estimated by electrolyte leakage measured at 75.4% ± 9.3% and occurred beyond 88% loss of xylem hydraulic conductance. Our study demonstrates that lavender plants are not able to recover from severe drought when they have used up their elastic water storage. Additionally, drought-induced mortality in these species was not linked to xylem hydraulic failure but rather to high levels of cell damage.


Asunto(s)
Sequías , Lavandula/anatomía & histología , Lavandula/fisiología , Electrólitos/metabolismo , Lavandula/metabolismo , Xilema/anatomía & histología , Xilema/metabolismo , Xilema/fisiología
12.
Front Plant Sci ; 11: 615335, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679818

RESUMEN

The triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents ("Fortune" mandarin and "Ellendale" tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (P net and g s ) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs ) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system.

13.
Front Plant Sci ; 10: 127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853962

RESUMEN

Plants require essential minerals for their growth and development that are mainly acquired from soil by their roots. Nutrient deficiency is an environmental stress that can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations are frequently employed to enhance tolerance to various abiotic stresses. These tolerances can be improved in doubled diploid genotypes. The aim of this work was to compare the impact of nutrient deficiency on the physiological and biochemical response of diploid (2x) and doubled diploid (4x) citrus seedlings: Volkamer lemon, Trifoliate orange × Cleopatra mandarin hybrid, Carrizo citrange, Citrumelo 4475. Flhorag1 (Poncirus trifoliata + and willow leaf mandarin), an allotetraploid somatic hybrid, was also included in this study. Our results showed that depending on the genotype, macronutrient and micronutrient deficiency affected certain physiological traits and oxidative metabolism differently. Tetraploid genotypes, mainly Flhorag1 and Citrumelo 4475, appeared resistant compared to the other genotypes as indicated by the lesser decrease in photosynthetic parameters (P net, F v/F m, and G s) and the lower accumulation of oxidative markers (MDA and H2O2) in roots and leaves, especially after long-term nutrient deficiency. Their higher tolerance to nutrient deficiency could be explained by better activation of their antioxidant system. For the other genotypes, tetraploidization did not induce greater tolerance to nutrient deficiency.

14.
Plant Physiol Biochem ; 135: 372-384, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30616112

RESUMEN

Nutrient deficiency has economic and ecological repercussions for citrus fruit crops worldwide. Citrus crops rely on fertilization to maintain good fruit output and quality, whereas new crop management policy aims to reduce fertilizers input. New rootstocks are needed to meet to this constraint, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. Here we compared physiological, biochemical and anatomic traits of leaves in diploid (2x) and doubled-diploid (4x) Citrumelo 4475 (Citrus paradisi L. Macf. × Poncirus trifoliata L. Raf.) and Volkamer lemon (Citrus limonia Osb.) seedlings over 7 months of nutrient deficiency. Photosynthetic parameters (Pnet, Gs and Fv/Fm) decreased, but to a lesser extent in 4x genotypes than 2x. Degradation of the ultrastructural organelles (chloroplasts and mitochondria) and compound cells (thylakoids and starches) was also lower in 4x genotypes, suggesting that tetraploidy may enhance tolerance to nutrient deficiency. However, leaf surface (stomata, stomatal density and epithelial cells) showed no nutrient deficiency-induced change. In 4x Citrumelo 4475, the higher tolerance to nutrient deficiency was associated with a lower MDA and H2O2 accumulation than in the 2x, suggesting a more efficient antioxidant system in the 4x genotype. However, few differences in antioxidant system and oxidative status were observed between 2x and 4x Volkamer lemons.


Asunto(s)
Citrus/genética , Diploidia , Plantones/genética , Tetraploidía , Clorofila A/metabolismo , Cloroplastos/ultraestructura , Citrus/metabolismo , Citrus/fisiología , Citrus/ultraestructura , Citrus paradisi/genética , Citrus paradisi/metabolismo , Citrus paradisi/fisiología , Citrus paradisi/ultraestructura , Microscopía Electrónica de Rastreo , Mitocondrias/ultraestructura , Nutrientes/deficiencia , Fotosíntesis , Poncirus/genética , Poncirus/metabolismo , Poncirus/fisiología , Poncirus/ultraestructura , Plantones/metabolismo , Plantones/fisiología , Plantones/ultraestructura , Estrés Fisiológico
15.
Physiol Plant ; 163(4): 502-515, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29412468

RESUMEN

While the xylem hydraulic properties, such as vulnerability to cavitation (VC), are of paramount importance in drought resistance, their genetic determinants remain unexplored. There is evidence that pectins and their methylation pattern are involved, but the detail of their involvement and the corresponding genes need to be clarified. We analyzed the hydraulic properties of the 35S::PME1 transgenic aspen that ectopically under- or over-express a xylem-abundant pectin methyl esterase, PtxtPME1. We also produced and analyzed 4CL1::PGII transgenic poplars expressing a fungal polygalacturonase, AnPGII, under the control of the Ptxa4CL1 promoter that is active in the developing xylem after xylem cell expansion. Both the 35S::PME1 under- and over-expressing aspen lines developed xylem with lower-specific hydraulic conductivity and lower VC, while the 4CL1::PGII plants developed xylem with a higher VC. These xylem hydraulic changes were associated with modifications in xylem structure or in intervessel pit structure that can result in changes in mechanical behavior of the pit membrane. This study shows that homogalacturonans and their methylation pattern influence xylem hydraulic properties, through its effect on xylem cell expansion and on intervessel pit properties and it show a role for PtxtPME1 in the xylem hydraulic properties.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Xilema/metabolismo , Hidrolasas de Éster Carboxílico/genética , Pared Celular/genética , Pared Celular/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Transmisión , Pectinas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Populus/genética , Regiones Promotoras Genéticas , Xilema/genética
16.
J Plant Physiol ; 214: 108-115, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28478318

RESUMEN

Low temperatures can disturb the development, growth and geographic distribution of plants, particularly cold-sensitive plants in the Mediterranean area, where temperatures can reach seasonally low levels. In citrus crops, scion/rootstock combinations are used to improve fruit production and quality, and increase tolerance to biotic and abiotic stresses. In the last decade, several studies have shown that tetraploid citrus seedlings or rootstocks are more tolerant to abiotic stress than their respective diploid. The objective of this study was to test whether the use of tetraploid rootstocks can improve the chilling tolerance of the scion. We compared physiological and biochemical responses to low seasonal temperatures of common Clementine (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) grafted on diploid and tetraploid Carrizo citrange rootstocks, named C/2xCC and C/4xCC, respectively. During the coldest months, C/4xCC showed a smaller decrease in net photosynthesis (Pn), stomatal conductance (Gs), chlorophyll fluorescence (Fv/Fm), and starch levels, and lower levels of malondialdehyde and electrolyte leakage than C/2xCC. Specific activities of catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were higher in C/4xCC during the cold period, whereas chlorophyll, proline, ascorbate and hydrogen peroxide (H2O2) levels and superoxide dismutase (SOD) activity did not vary significantly between C/4xCC and C/2xCC throughout the study period. Taken together, these results demonstrate that tetraploid Carrizo citrange rootstock improves the chilling tolerance of common clementine (scion) thanks to a part of the antioxidant system.


Asunto(s)
Citrus sinensis/metabolismo , Citrus/metabolismo , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Citrus/fisiología , Citrus sinensis/fisiología , Frío , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Tetraploidía
17.
Plant Physiol ; 168(2): 452-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25888614

RESUMEN

eskimo1-5 (esk1-5) is a dwarf Arabidopsis (Arabidopsis thaliana) mutant that has a constitutive drought syndrome and collapsed xylem vessels, along with low acetylation levels in xylan and mannan. ESK1 has xylan O-acetyltransferase activity in vitro. We used a suppressor strategy on esk1-5 to screen for variants with wild-type growth and low acetylation levels, a favorable combination for ethanol production. We found a recessive mutation in the KAKTUS (KAK) gene that suppressed dwarfism and the collapsed xylem character, the cause of decreased hydraulic conductivity in the esk1-5 mutant. Backcrosses between esk1-5 and two independent knockout kak mutants confirmed suppression of the esk1-5 effect. kak single mutants showed larger stem diameters than the wild type. The KAK promoter fused with a reporter gene showed activity in the vascular cambium, phloem, and primary xylem in the stem and hypocotyl. However, suppression of the collapsed xylem phenotype in esk1 kak double mutants was not associated with the recovery of cell wall O-acetylation or any major cell wall modifications. Therefore, our results indicate that, in addition to its described activity as a repressor of endoreduplication, KAK may play a role in vascular development. Furthermore, orthologous esk1 kak double mutants may hold promise for ethanol production in crop plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/anatomía & histología , Arabidopsis/genética , Biomasa , Supresión Genética , Xilema/anatomía & histología , Acetilación , Acetiltransferasas , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Metanosulfonato de Etilo , Glucuronidasa/metabolismo , Proteínas de la Membrana , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Floema/metabolismo , Haz Vascular de Plantas/metabolismo , Agua
18.
Ann Bot ; 115(2): 187-99, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25452248

RESUMEN

BACKGROUND AND AIMS: The efficiency and safety functions of xylem hydraulics are strongly dependent on the pits that connect the xylem vessels. However, little is known about their biochemical composition and thus about their hydraulic properties. In this study, the distribution of the epitopes of different wall components (cellulose, hemicelluloses, pectins and lignins) was analysed in intervessel pits of hybrid poplar (Populus tremula × alba). METHODS: Immunogold labelling with transmission electron microscopy was carried out with a set of antibodies raised against different epitopes for each wall polysaccharide type and for lignins. Analyses were performed on both immature and mature vessels. The effect of sap ionic strength on xylem conductance was also tested. KEY RESULTS: In mature vessels, the pit membrane (PM) was composed of crystalline cellulose and lignins. None of the hemicellulose epitopes were found in the PM. Pectin epitopes in mature vessels were highly concentrated in the annulus, a restricted area of the PM, whereas they were initially found in the whole PM in immature vessels. The pit border also showed a specific labelling pattern, with higher cellulose labelling compared with the secondary wall of the vessel. Ion-mediated variation of 24 % was found for hydraulic conductance. CONCLUSIONS: Cellulose microfibrils, lignins and annulus-restricted pectins have different physicochemical properties (rigidity, hydrophobicity, porosity) that have different effects on the hydraulic functions of the PM, and these influence both the hydraulic efficiency and vulnerability to cavitation of the pits, including ion-mediated control of hydraulic conductance. Impregnation of the cellulose microfibrils of the PM with lignins, which have low wettability, may result in lower cavitation pressure for a given pore size and thus help to explain the vulnerability of this species to cavitation.


Asunto(s)
Biopolímeros/metabolismo , Pared Celular/metabolismo , Polisacáridos/metabolismo , Populus/metabolismo , Xilema/metabolismo , Pared Celular/ultraestructura , Microscopía Electrónica de Transmisión , Populus/genética , Populus/ultraestructura , Coloración y Etiquetado , Xilema/ultraestructura
19.
Tree Physiol ; 34(12): 1321-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25428826

RESUMEN

Plant species living in the understory increase carbon (C) allocation toward leaf production for maximizing light capture at the expense of roots and stems, with negative consequences for the whole-plant hydraulic conductance. Moreover, under some conditions, the high atmospheric evaporative demand occurring in Mediterranean areas may be not well buffered by the canopy, which might be the case for relict conifer Abies pinsapo Boiss. growing in the forest understory. We hypothesized that acclimation to combined understory shade and high atmospheric dryness can be achieved through the adjustment of water losses to cope with the restriction in water transport. The results reveal high structural plasticity in A. pinsapo that allows light harvesting of this species to maximize light capture in the forest understory, and maintain a positive C balance under low light conditions. However, growth in the understory resulted in reduced leaf-specific conductivity, up to approximately four to five times, implying decreased plant capacity to supply water to the leaves. In order to cope with the high atmospheric evaporative demand in the understory, there is an adjustment of the stomatal conductance to the hydraulic conductivity by means of a reduction in the stomatal density in understory individuals, which is due to the almost complete lack of stomata in the adaxial side of the needles. To the extent of our knowledge, such a drastic phenotypic response found in a conifer when growing under shaded conditions had not been previously reported.


Asunto(s)
Abies/fisiología , Aclimatación , Oscuridad , Sequías , Ambiente , Hojas de la Planta/fisiología , Agua/fisiología , Transporte Biológico , Luz , Región Mediterránea , Fotosíntesis , Estomas de Plantas , Estrés Fisiológico , Árboles/fisiología
20.
Ann Bot ; 114(2): 325-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24918205

RESUMEN

BACKGROUND AND AIMS: Various correlations have been identified between anatomical features of bordered pits in angiosperm xylem and vulnerability to cavitation, suggesting that the mechanical behaviour of the pits may play a role. Theoretical modelling of the membrane behaviour has been undertaken, but it requires input of parameters at the nanoscale level. However, to date, no experimental data have indicated clearly that pit membranes experience strain at high levels during cavitation events. METHODS: Transmission electron microscopy (TEM) was used in order to quantify the pit micromorphology of four tree species that show contrasting differences in vulnerability to cavitation, namely Sorbus aria, Carpinus betulus, Fagus sylvatica and Populus tremula. This allowed anatomical characters to be included in a mechanical model that was based on the Kirchhoff-Love thin plate theory. A mechanistic model was developed that included the geometric features of the pits that could be measured, with the purpose of evaluating the pit membrane strain that results from a pressure difference being applied across the membrane. This approach allowed an assessment to be made of the impact of the geometry of a pit on its mechanical behaviour, and provided an estimate of the impact on air-seeding resistance. KEY RESULTS: The TEM observations showed evidence of residual strains on the pit membranes, thus demonstrating that this membrane may experience a large degree of strain during cavitation. The mechanical modelling revealed the interspecific variability of the strains experienced by the pit membrane, which varied according to the pit geometry and the pressure experienced. The modelling output combined with the TEM observations suggests that cavitation occurs after the pit membrane has been deflected against the pit border. Interspecific variability of the strains experienced was correlated with vulnerability to cavitation. Assuming that air-seeding occurs at a given pit membrane strain, the pressure predicted by the model to achieve this mechanical state corresponds to experimental values of cavitation sensitivity (P50). CONCLUSIONS: The results provide a functional understanding of the importance of pit geometry and pit membrane structure in air-seeding, and thus in vulnerability to cavitation.


Asunto(s)
Membrana Celular/fisiología , Magnoliopsida/anatomía & histología , Magnoliopsida/fisiología , Modelos Biológicos , Xilema/anatomía & histología , Xilema/fisiología , Fenómenos Biomecánicos , Membrana Celular/ultraestructura , Magnoliopsida/ultraestructura , Xilema/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...