Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(4): 539-550, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503962

RESUMEN

The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.

2.
J Exp Bot ; 75(7): 2027-2045, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38070484

RESUMEN

The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Protoclorofilida/metabolismo , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Aldehído Oxidorreductasas/genética , Clorofila/metabolismo , Tetrapirroles/metabolismo
3.
Plant J ; 116(5): 1370-1384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37616189

RESUMEN

The genomic integrity of every organism is endangered by various intrinsic and extrinsic stresses. To maintain genomic integrity, a sophisticated DNA damage response (DDR) network is activated rapidly after DNA damage. Notably, the fundamental DDR mechanisms are conserved in eukaryotes. However, knowledge about many regulatory aspects of the plant DDR is still limited. Important, yet little understood, regulatory factors of the DDR are the long non-coding RNAs (lncRNAs). In humans, 13 lncRNAs functioning in DDR have been characterized to date, whereas no such lncRNAs have been characterized in plants yet. By meta-analysis, we identified the putative long intergenic non-coding RNA induced by DNA damage (LINDA) that responds strongly to various DNA double-strand break-inducing treatments, but not to replication stress induced by mitomycin C. After DNA damage, LINDA is rapidly induced in an ATM- and SOG1-dependent manner. Intriguingly, the transcriptional response of LINDA to DNA damage is similar to that of its flanking hypothetical protein-encoding gene. Phylogenetic analysis of putative Brassicales and Malvales LINDA homologs indicates that LINDA lncRNAs originate from duplication of a flanking small protein-encoding gene followed by pseudogenization. We demonstrate that LINDA is not only needed for the regulation of this flanking gene but also fine-tuning of the DDR after the occurrence of DNA double-strand breaks. Moreover, Δlinda mutant root stem cells are unable to recover from DNA damage, most likely due to hyper-induced cell death.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Filogenia , Daño del ADN/genética , ADN/metabolismo , Reparación del ADN , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Plant J ; 94(3): 485-496, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29443418

RESUMEN

Chlorophyll is synthesized from activated glutamate in the tetrapyrrole biosynthesis pathway through at least 20 different enzymatic reactions. Among these, the MgProto monomethylester (MgProtoME) cyclase catalyzes the formation of a fifth isocyclic ring to tetrapyrroles to form protochlorophyllide. The enzyme consists of two proteins. The CHL27 protein is proposed to be the catalytic component, while LCAA/YCF54 likely acts as a scaffolding factor. In comparison to other reactions of chlorophyll biosynthesis, this enzymatic step lacks clear elucidation and it is hardly understood, how electrons are delivered for the NADPH-dependent cyclization reaction. The present study intends to elucidate more precisely the role of LCAA/YCF54. Transgenic Arabidopsis lines with inactivated and overexpressed YCF54 reveal the mutual stability of YCF54 and CHL27. Among the YCF54-interacting proteins, the plastidal ferredoxin-NADPH reductase (FNR) was identified. We showed in N. tabacum and A. thaliana that a deficit of FNR1 or YCF54 caused MgProtoME accumulation, the substrate of the cyclase, and destabilization of the cyclase subunits. It is proposed that FNR serves as a potential donor for electrons required in the cyclase reaction and connects chlorophyll synthesis with photosynthetic activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Cloroplastos/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Oxigenasas/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
5.
Plant Physiol ; 174(2): 1037-1050, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432258

RESUMEN

The LIL3 protein of Arabidopsis (Arabidopsis thaliana) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vías Biosintéticas , Complejos de Proteína Captadores de Luz/metabolismo , Terpenos/metabolismo , Tetrapirroles/biosíntesis , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Proteínas de Cloroplastos , ADN Bacteriano/genética , Fluorescencia , Silenciador del Gen , Cinética , Complejos de Proteína Captadores de Luz/química , Modelos Biológicos , Mutagénesis Insercional , Mutación/genética , Fotosíntesis , Virus de Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Protoclorofilida/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Tilacoides/metabolismo , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...