Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Res (Thessalon) ; 25: 15, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30116723

RESUMEN

BACKGROUND: The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. RESULTS: Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3-6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGN cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. CONCLUSIONS: These findings suggest that the secretory apparatus of resting gland cells is "overbuilt" to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.

2.
PLoS Genet ; 10(6): e1004343, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945799

RESUMEN

Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ecdisona/biosíntesis , Hormonas de Insectos/biosíntesis , Proteínas Nucleares/metabolismo , Factores del Dominio POU/metabolismo , Proteínas Represoras/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/biosíntesis , Animales , Sitios de Unión , Transporte Biológico/genética , Colesterol/metabolismo , Proteínas de Unión al ADN , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ecdisona/genética , Ecdisona/metabolismo , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hormonas de Insectos/metabolismo , Proteínas de la Membrana/biosíntesis , Factores del Dominio POU/biosíntesis , Factores del Dominio POU/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Serina-Treonina Quinasas TOR/biosíntesis , Transcripción Genética
3.
Development ; 140(23): 4730-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24173800

RESUMEN

Steroid hormones trigger the onset of sexual maturation in animals by initiating genetic response programs that are determined by steroid pulse frequency, amplitude and duration. Although steroid pulses coordinate growth and timing of maturation during development, the mechanisms generating these pulses are not known. Here we show that the ecdysone steroid pulse that drives the juvenile-adult transition in Drosophila is determined by feedback circuits in the prothoracic gland (PG), the major steroid-producing tissue of insect larvae. These circuits coordinate the activation and repression of hormone synthesis, the two key parameters determining pulse shape (amplitude and duration). We show that ecdysone has a positive-feedback effect on the PG, rapidly amplifying its own synthesis to trigger pupariation as the onset of maturation. During the prepupal stage, a negative-feedback signal ensures the decline in ecdysone levels required to produce a temporal steroid pulse that drives developmental progression to adulthood. The feedback circuits rely on a developmental switch in the expression of Broad isoforms that transcriptionally activate or silence components in the ecdysone biosynthetic pathway. Remarkably, our study shows that the same well-defined genetic program that stimulates a systemic downstream response to ecdysone is also utilized upstream to set the duration and amplitude of the ecdysone pulse. Activation of this switch-like mechanism ensures a rapid, self-limiting PG response that functions in producing steroid oscillations that can guide the decision to terminate growth and promote maturation.


Asunto(s)
Drosophila melanogaster/embriología , Ecdisona/metabolismo , Hormonas de Insectos/metabolismo , Maduración Sexual/genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisona/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/genética , Regiones Promotoras Genéticas , Transducción de Señal
4.
PLoS One ; 7(5): e36548, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563507

RESUMEN

Animals use TGF-ß superfamily signal transduction pathways during development and tissue maintenance. The superfamily has traditionally been divided into TGF-ß/Activin and BMP branches based on relationships between ligands, receptors, and R-Smads. Several previous reports have shown that, in cell culture systems, "BMP-specific" Smads can be phosphorylated in response to TGF-ß/Activin pathway activation. Using Drosophila cell culture as well as in vivo assays, we find that Baboon, the Drosophila TGF-ß/Activin-specific Type I receptor, can phosphorylate Mad, the BMP-specific R-Smad, in addition to its normal substrate, dSmad2. The Baboon-Mad activation appears direct because it occurs in the absence of canonical BMP Type I receptors. Wing phenotypes generated by Baboon gain-of-function require Mad, and are partially suppressed by over-expression of dSmad2. In the larval wing disc, activated Baboon cell-autonomously causes C-terminal Mad phosphorylation, but only when endogenous dSmad2 protein is depleted. The Baboon-Mad relationship is thus controlled by dSmad2 levels. Elevated P-Mad is seen in several tissues of dSmad2 protein-null mutant larvae, and these levels are normalized in dSmad2; baboon double mutants, indicating that the cross-talk reaction and Smad competition occur with endogenous levels of signaling components in vivo. In addition, we find that high levels of Activin signaling cause substantial turnover in dSmad2 protein, providing a potential cross-pathway signal-switching mechanism. We propose that the dual activity of TGF-ß/Activin receptors is an ancient feature, and we discuss several ways this activity can modulate TGF-ß signaling output.


Asunto(s)
Receptores de Activinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína Smad2/metabolismo , Factores de Transcripción/metabolismo , Receptores de Activinas/genética , Animales , Western Blotting , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Larva/crecimiento & desarrollo , Larva/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Receptor Cross-Talk , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteínas Smad Reguladas por Receptores , Proteína Smad2/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
5.
J Neurosci ; 27(29): 7740-50, 2007 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-17634368

RESUMEN

Recently, several evolutionary conserved signaling pathways that play prominent roles in regulating early neurodevelopment have been found to regulate synaptic remodeling in the adult. To test whether adult neuronal expression of bone morphogenic protein (BMP) signaling components also plays a postnatal role in regulating neuronal plasticity, we modulated BMP signaling in mice both in vivo and in vitro by genetic removal of the BMP inhibitor chordin or by perfusing recombinant BMP signaling pathway components onto acute hippocampal slices. Chordin null mice exhibited a significant increase in presynaptic transmitter release from hippocampal neurons, resulting in enhanced paired-pulse facilitation and long-term potentiation. These mice also showed a decreased acquisition time in a water maze test along with less exploratory activity during Y-maze and open-field tests. Perfusion of BMP ligands onto hippocampal slices replicated the presynaptic phenotype of chordin null slices, but bath application of Noggin, another antagonist of BMP signaling pathway, significantly decrease the frequency of miniature EPSCs. These results demonstrate that the BMP signaling pathway contributes to synaptic plasticity and learning likely through a presynaptic mechanism.


Asunto(s)
Glicoproteínas/metabolismo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/metabolismo , Conducta Espacial/fisiología , Animales , Animales Recién Nacidos , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Conducta Exploratoria/fisiología , Glicoproteínas/deficiencia , Hipocampo/fisiología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Plasticidad Neuronal/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp , Terminales Presinápticos/ultraestructura , Factores de Tiempo
6.
Plant Cell ; 18(10): 2567-81, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17012602

RESUMEN

We have investigated the transport of storage proteins, their processing proteases, and the Vacuolar Sorting Receptor-1/Epidermal Growth Factor Receptor-Like Protein1 (VSR-1/ATELP1) receptor during the formation of protein storage vacuoles in Arabidopsis thaliana embryos by means of high-pressure freezing/freeze substitution, electron tomography, immunolabeling techniques, and subcellular fractionation. The storage proteins and their processing proteases are segregated from each other within the Golgi cisternae and packaged into separate vesicles. The storage protein-containing vesicles but not the processing enzyme-containing vesicles carry the VSR-1/ATELP1 receptor. Both types of secretory vesicles appear to fuse into a type of prevacuolar multivesicular body (MVB). We have also determined that the proteolytic processing of the 2S albumins starts in the MVBs. We hypothesize that the compartmentalized processing of storage proteins in the MVBs may allow for the sequential activation of processing proteases as the MVB lumen gradually acidifies.


Asunto(s)
Arabidopsis/embriología , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Semillas/metabolismo , Secuencia de Aminoácidos , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas de Plantas/química , Fracciones Subcelulares/metabolismo
7.
Nutr Clin Care ; 7(2): 46-55, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15481738

RESUMEN

We examine the physiologic changes involved in the onset of cardiovascular disease (CVD) as well as multiple dietary and lifestyle factors that either promote or prevent CVD. Dietary fats (saturated, monounsaturated, n-3 and n-6 polyunsaturated, and trans fats), antioxidants, and carbohydrates, as well as alcohol consumption, exercise, smoking, and infections, are evaluated. Epidemiologic studies and clinical trials are discussed in light of the underlying mechanisms.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Dieta/métodos , Estilo de Vida , Consumo de Bebidas Alcohólicas , Antioxidantes/administración & dosificación , Enfermedades Cardiovasculares/etiología , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Humanos , Actividad Motora/fisiología , Factores de Riesgo , Fumar/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA