Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 44(16): 3909-3912, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415509

RESUMEN

We report on the carrier-envelope phase (CEP) stabilization of a Yb-doped fiber amplifier system delivering 30 µJ pulses at 100 kHz repetition rate. A single-shot, every-shot measurement of the CEP stability based on a simple f-2f interferometer is performed, yielding a CEP standard deviation of 320 mrad rms over 1 s. Long-term stability is also assessed, with 380 mrad measured over 1 h. This level of performance is allowed by a hybrid architecture, including a passively CEP-stabilized front-end based on difference frequency generation and an active CEP stabilization loop for the fiber amplifier system, acting on a telecom-grade integrated LiNbO3 phase modulator. Together with recent demonstrations of temporal compression down to the few-cycle regime, the presented results demonstrate the relevance of the Yb-doped high repetition rate laser for attoscience.

2.
Opt Express ; 27(10): 13624-13636, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163823

RESUMEN

Generating energetic, few-cycle laser pulses with stabilized carrier-envelope phase at a high-repetition rate constitutes a first step to access the ultra-fast dynamics underlying the interaction of matter with intense, ultrashort pulses in attosecond science or high-field physics. We present here a Ti:Sa-based 1 kHz TW-class laser delivering 17.8 fs pulses with 350 mrad shot-to-shot CEP noise based on an original 10 kHz front-end design. In parallel to this short pulse duration operation mode, it is possible to tune the output wavelength of the front end within a 90 nm range around 800 nm.

3.
Opt Lett ; 42(12): 2326-2329, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28614343

RESUMEN

We present a compact 10 kHz Ti:Sa front end relying on an original double-crystal regenerative amplifier design. This new configuration optimizes the thermal heat load management, allowing the production of a 110 nm large spectrum and maintaining a good beam profile quality. The front end delivers up to 5 W after compression, 17 fs pulses with a 170 mrad shot-to-shot residual carrier-envelope phase noise.

4.
Faraday Discuss ; 194: 161-183, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27853775

RESUMEN

Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

5.
Science ; 354(6313): 734-738, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27846602

RESUMEN

The dynamics of quantum systems are encoded in the amplitude and phase of wave packets. However, the rapidity of electron dynamics on the attosecond scale has precluded the complete characterization of electron wave packets in the time domain. Using spectrally resolved electron interferometry, we were able to measure the amplitude and phase of a photoelectron wave packet created through a Fano autoionizing resonance in helium. In our setup, replicas obtained by two-photon transitions interfere with reference wave packets that are formed through smooth continua, allowing the full temporal reconstruction, purely from experimental data, of the resonant wave packet released in the continuum. In turn, this resolves the buildup of the autoionizing resonance on an attosecond time scale. Our results, in excellent agreement with ab initio time-dependent calculations, raise prospects for detailed investigations of ultrafast photoemission dynamics governed by electron correlation, as well as coherent control over structured electron wave packets.

6.
Opt Express ; 21(21): 25248-56, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24150365

RESUMEN

In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.

7.
Opt Express ; 19(21): 19935-41, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21997002

RESUMEN

Using an original CEP stabilization technique based on the linear electro-optical effect in a specific crystal, we achieved long term CEP stabilization of a 20 W, 1 kHz laser with residual noise as low as 440 mrad (rms). At 3 W, the CEP shot to shot noise is kept as low as 320 mrad (rms) over half an hour.

8.
Opt Express ; 19(4): 3677-85, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21369193

RESUMEN

We present the first measurement of the attosecond emission generated from underdense plasma produced on a solid target. We generate high-order harmonics of a femtosecond Ti:sapphire laser focused in a weakly ionized underdense chromium plasma. Using the "Reconstruction of Attosecond Beating by Interference of Two-photon Transitions" (RABITT) technique, we show that the 11th to the 19th harmonic orders form in the time domain an attosecond pulse train with each pulse having 300 as duration, which is only 1.05 times the theoretical Fourier transform limit. Measurements reveal a very low positive group delay dispersion of 4200 as2. Beside its fundamental interest, high-order harmonic generation in plasma plumes could thus provide an intense source of attosecond pulses for applications.

9.
Opt Express ; 19(6): 5410-8, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21445180

RESUMEN

We present a new method to control the Carrier-Envelope Phase of ultra-short laser pulses by using the linear Electro-Optic Effect. Experimental demonstration is carried out on a Chirped Pulse Amplification based laser. Phase shifts greater than π radian can be obtained by applying moderate voltage on a LiNbO3 crystal with practically no changes to all other parameters of the pulse with the exception of its group delay. Time response of the Electro-Optic effect makes possible shaping at a high repetition rate or stabilization of the CEP of ultra short CPA laser systems.

10.
Phys Rev Lett ; 103(2): 028104, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19659250

RESUMEN

Coherent x-ray diffractive imaging is a powerful method for studies on nonperiodic structures on the nanoscale. Access to femtosecond dynamics in major physical, chemical, and biological processes requires single-shot diffraction data. Up to now, this has been limited to intense coherent pulses from a free electron laser. Here we show that laser-driven ultrashort x-ray sources offer a comparatively inexpensive alternative. We present measurements of single-shot diffraction patterns from isolated nano-objects with a single 20 fs pulse from a table-top high-harmonic x-ray laser. Images were reconstructed with a resolution of 119 nm from the single shot and 62 nm from multiple shots.


Asunto(s)
Difracción de Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Rayos Láser
11.
Opt Lett ; 25(2): 135-7, 2000 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18059807

RESUMEN

We demonstrate that high-order harmonics generated by short, intense laser pulses in gases provide an interesting radiation source for extreme ultraviolet interferometry, since they are tunable, coherent, of short pulse duration, and simple to manipulate. Harmonics from the 9th to the 15th are used to measure the thickness of an aluminum layer. The 11th harmonic is used to determine the spatial distribution of the electron density of a plasma produced by a 300-ps laser. Electronic densities higher than 2-10(20)electrons/cm>(3) are measured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA