Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 14: 190, 2014 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-25059596

RESUMEN

BACKGROUND: The understanding of sugarcane genetics has lagged behind that of other members of the Poaceae family such as wheat, rice, barley and sorghum mainly due to the complexity, size and polyploidization of the genome. We have used the genetic map of a sugarcane cultivar to generate a consensus genetic map to increase genome coverage for comparison to the sorghum genome. We have utilized the recently developed sugarcane DArT array to increase the marker density within the genetic map. The sequence of these DArT markers plus SNP and EST-SSR markers was then used to form a bridge to the sorghum genomic sequence by BLAST alignment to start to unravel the complex genomic architecture of sugarcane. RESULTS: Comparative mapping revealed that certain sugarcane chromosomes show greater levels of synteny to sorghum than others. On a macrosyntenic level a good collinearity was observed between sugarcane and sorghum for 4 of the 8 homology groups (HGs). These 4 HGs were syntenic to four sorghum chromosomes with from 98% to 100% of these chromosomes covered by these linked markers. Four major chromosome rearrangements were identified between the other four sugarcane HGs and sorghum, two of which were condensations of chromosomes reducing the basic chromosome number of sugarcane from x = 10 to x = 8. This macro level of synteny was transferred to other members within the Poaceae family such as maize to uncover the important evolutionary relationships that exist between sugarcane and these species. CONCLUSIONS: Comparative mapping of sugarcane to the sorghum genome has revealed new information on the genome structure of sugarcane which will help guide identification of important genes for use in sugarcane breeding. Furthermore of the four major chromosome rearrangements identified in this study, three were common to maize providing some evidence that chromosome reduction from a common paleo-ancestor of both maize and sugarcane was driven by the same translocation events seen in both species.


Asunto(s)
Genoma de Planta , Poliploidía , Saccharum/genética , Translocación Genética , Evolución Biológica , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Sorghum/genética , Sintenía , Zea mays/genética
2.
BMC Genomics ; 15: 152, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24564784

RESUMEN

BACKGROUND: Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated. RESULTS: Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs. CONCLUSIONS: The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.


Asunto(s)
Marcadores Genéticos , Genoma de Planta , Saccharum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Mapeo Cromosómico , Variación Genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple
3.
Plant Biotechnol J ; 12(4): 411-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24330327

RESUMEN

Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques.


Asunto(s)
Agricultura , Agrobacterium tumefaciens/metabolismo , Biolística/métodos , Saccharum/crecimiento & desarrollo , Saccharum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Biomasa , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo Genético , Carácter Cuantitativo Heredable , Transformación Genética , Transgenes
4.
Genome ; 53(11): 973-81, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21076513

RESUMEN

Few association mapping studies have simultaneously accounted for population structure, genotype by environment interaction (GEI), and spatial variation. In this sugarcane association mapping study we tested models accounting for these factors and identified the impact that each model component had on the list of markers declared as being significantly associated with traits. About 480 genotypes were evaluated for cane yield and sugar content at three sites and scored with DArT markers. A mixed model was applied in analysis of the data to simultaneously account for the impacts of population structure, GEI, and spatial variation within a trial. Two forms of the DArT marker data were used in the analysis: the standard discrete data (0, 1) and a continuous DArT score, which is related to the marker dosage. A large number of markers were significantly associated with cane yield and sugar content. However, failure to account for population structure, GEI, and (or) spatial variation produced both type I and type II errors, which on the one hand substantially inflated the number of significant markers identified (especially true for failing to account for GEI) and on the other hand resulted in failure to detect markers that could be associated with cane yield or sugar content (especially when failing to account for population structure). We concluded that association mapping based on trials from one site or analysis that failed to account for GEI would produce many trial-specific associated markers that would have low value in breeding programs.


Asunto(s)
Ambiente , Variación Genética/genética , Genotipo , Sitios de Carácter Cuantitativo/genética , Saccharum/genética , Cruzamiento , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Marcadores Genéticos/genética
6.
Mol Plant Microbe Interact ; 17(2): 175-83, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14964531

RESUMEN

Leifsonia xyli subsp. xyli, the causal agent of ratoon stunting disease in sugarcane, is a xylem-limited, nutritionally fastidious, slow growing, gram-positive coryneform bacterium. Because of the difficulties in growing this bacterium in pure culture, little is known about the molecular mechanisms of pathogenesis. Currently, the genome sequence of L. xyli subsp. xyli is being completed by the Agronomical and Environmental Genomes group from the Organization for Nucleotide Sequencing and Analysis in Brazil. To complement this work, we produced 712 Lxx::Tn4431 transposon mutants and sequenced flanking regions from 383 of these, using a rapid polymerase chain reaction-based approach. Tn4431 insertions appeared to be widespread throughout the L. xyli subsp. xyli genome; however, there were regions that had significantly higher concentrations of insertions. The Tn4431 mutant library was screened for individuals unable to colonize sugarcane, and one noncolonizing mutant was found. The mutant contained a transposon insertion disrupting two open reading frames (ORF), one of which had homology to an integral membrane protein from Mycobacterium leprae. Sequencing of the surrounding regions revealed two operons, pro and cyd, both of which are believed to play roles in disease. Complementation studies were carried out using the noncolonizing Lxx::Tn4431 mutant. The noncolonizing mutant was transformed with a cosmid containing 40 kbp of wild-type sequence, which included the two ORF disrupted in the mutant, and several transformants were subsequently able to colonize sugarcane. However, analysis of each of these transformants, before and after colonization, suggests that they have all undergone various recombinant events, obscuring the roles of these ORF in L. xyli subsp. xyli pathogenesis.


Asunto(s)
Actinomycetales/genética , Genoma Bacteriano , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Brasil , Secuencia Conservada , Genómica , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Saccharum/microbiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA