Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38868941

RESUMEN

BACKGROUND: Atherosclerosis is driven by the infiltration of the arterial intima by diverse immune cells and smooth muscle cells (SMCs). CD8+ T cells promote lesion growth during atherosclerotic lesion development, but their role in advanced atherosclerosis is less clear. Here, we studied the role of CD8+ T cells and their effects on SMCs in established atherosclerosis. METHODS: CD8+ T cells were depleted in (SMC reporter) low-density lipoprotein receptor-deficient (Ldlr-/-) mice with established atherosclerotic lesions. Atherosclerotic lesion formation was examined, and single-cell RNA sequencing of aortic SMCs and their progeny was performed. Additionally, coculture experiments with primary aortic SMCs and CD8+ T cells were conducted. RESULTS: Although we could not detect differences in atherosclerotic lesion size, an increased plaque SMC content was noted in mice after CD8+ T-cell depletion. Single-cell RNA sequencing of aortic lineage-traced SMCs revealed contractile SMCs and a modulated SMC cluster, expressing macrophage- and osteoblast-related genes. CD8+ T-cell depletion was associated with an increased contractile but decreased macrophage and osteoblast-like gene signature in this modulated aortic SMC cluster. Conversely, exposure of isolated aortic SMCs to activated CD8+ T cells decreased the expression of genes indicative of a contractile SMC phenotype and induced a macrophage and osteoblast-like cell state. Notably, CD8+ T cells triggered calcium deposits in SMCs under osteogenic conditions. Mechanistically, we identified transcription factors highly expressed in modulated SMCs, including Runx1, to be induced by CD8+ T cells in cultured SMCs in an IFNγ (interferon-γ)-dependent manner. CONCLUSIONS: We here uncovered CD8+ T cells to control the SMC phenotype in atherosclerosis. CD8+ T cells promote SMC dedifferentiation and drive SMCs to adopt features of an osteoblast-like, procalcifying cell phenotype. Given the critical role of SMCs in atherosclerotic plaque stability, CD8+ T cells could thus be explored as therapeutic target cells during lesion progression.

2.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G25-G35, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713618

RESUMEN

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Colesterol , Proteínas del Citoesqueleto , Proteínas con Dominio LIM , Proteínas de Transporte de Membrana , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Células CACO-2 , Humanos , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Colesterol/metabolismo , Colesterol/sangre , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Receptores de LDL/metabolismo , Receptores de LDL/genética , Mucosa Intestinal/metabolismo , Enterocitos/metabolismo , Absorción Intestinal , Dieta Alta en Grasa , Proteínas de Homeodominio
3.
Blood ; 142(17): 1463-1477, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441848

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Excessive neutrophil infiltration into the pulmonary airspace is the main cause for the acute inflammation and lung injury. Platelets have been implicated in the pathogenesis of ALI/ARDS, but the underlying mechanisms are not fully understood. Here, we show that the immunoreceptor tyrosine-based activation motif-coupled immunoglobulin-like platelet receptor, glycoprotein VI (GPVI), plays a key role in the early phase of pulmonary thrombo-inflammation in a model of lipopolysaccharide (LPS)-induced ALI in mice. In wild-type (WT) control mice, intranasal LPS application triggered severe pulmonary and blood neutrophilia, hypothermia, and increased blood lactate levels. In contrast, GPVI-deficient mice as well as anti-GPVI-treated WT mice were markedly protected from pulmonary and systemic compromises and showed no increased pulmonary bleeding. High-resolution multicolor microscopy of lung sections and intravital confocal microcopy of the ventilated lung revealed that anti-GPVI treatment resulted in less stable platelet interactions with neutrophils and overall reduced platelet-neutrophil complex (PNC) formation. Anti-GPVI treatment also reduced neutrophil crawling and adhesion on endothelial cells, resulting in reduced neutrophil transmigration and alveolar infiltrates. Remarkably, neutrophil activation was also diminished in anti-GPVI-treated animals, associated with strongly reduced formation of PNC clusters and neutrophil extracellular traps (NETs) compared with that in control mice. These results establish GPVI as a key mediator of neutrophil recruitment, PNC formation, and NET formation (ie, NETosis) in experimental ALI. Thus, GPVI inhibition might be a promising strategy to reduce the acute pulmonary inflammation that causes ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Síndrome de Dificultad Respiratoria , Animales , Ratones , Lesión Pulmonar Aguda/patología , Células Endoteliales/patología , Inflamación/patología , Lipopolisacáridos/efectos adversos , Pulmón/patología , Infiltración Neutrófila , Neutrófilos/patología , Neumonía/patología , Síndrome de Dificultad Respiratoria/patología
4.
Front Immunol ; 14: 1197894, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359521

RESUMEN

Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.


Asunto(s)
Trombosis , Animales , Ratones , Plaquetas , Proteínas Portadoras/farmacología , Trombina/farmacología
5.
Biomedicines ; 11(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831095

RESUMEN

Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.

6.
Cells ; 11(24)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552746

RESUMEN

Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4α (HNF4α) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7α-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4α levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile.


Asunto(s)
Ácidos y Sales Biliares , Hepatitis , Humanos , Espectrometría de Masas en Tándem , Colesterol/metabolismo , Citocinas , Inflamación
7.
Eur J Immunol ; 52(12): 1946-1960, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357005

RESUMEN

The development of two conventional dendritic cells (DC) subsets (cDC1 and cDC2) and the plasmacytoid DC (pDC) in vivo and in cultures of bone marrow (BM) cells is mediated by the growth factor Flt3L. However, little is known about the factors that direct the development of the individual DC subsets. Here, we describe the selective in vitro generation of murine ESAMlow CD103- XCR1- CD172a+ CD11b+ cDC2 from BM by treatment with a combination of Flt3L, LIF, and IL-10 (collectively named as FL10). FL10 promotes common dendritic cell progenitors (CDP) proliferation in the cultures, similar to Flt3L and CDP sorted and cultured in FL10 generate exclusively cDC2. These cDC2 express the transcription factors Irf4, Klf4, and Notch2, and their growth is reduced using BM from Irf4-/- mice, but the expression of Batf3 and Tcf4 is low. Functionally they respond to TLR3, TLR4, and TLR9 signals by upregulation of the surface maturation markers MHC II, CD80, CD86, and CD40, while they poorly secrete proinflammatory cytokines. Peptide presentation to TCR transgenic OT-II cells induced proliferation and IFN-γ production that was similar to GM-CSF-generated BM-DC and higher than Flt3L-generated DC. Together, our data support that FL10 culture of BM cells selectively promotes CDP-derived ESAMlow cDC2 (cDC2B) development and survival in vitro.


Asunto(s)
Médula Ósea , Interleucina-10 , Animales , Ratones , Proteína Quinasa CDC2 , Moléculas de Adhesión Celular
8.
Cell Rep ; 35(6): 109102, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979620

RESUMEN

Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and ß1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.


Asunto(s)
Citoplasma/metabolismo , Megacariocitos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
9.
J Exp Clin Cancer Res ; 38(1): 397, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31506076

RESUMEN

BACKGROUND: Immune checkpoint inhibition and in particular anti-PD-1 immunotherapy have revolutionized the treatment of advanced melanoma. In this regard, higher tumoral PD-L1 protein (gene name: CD274) expression is associated with better clinical response and increased survival to anti-PD-1 therapy. Moreover, there is increasing evidence that tumor suppressor proteins are involved in immune regulation and are capable of modulating the expression of immune checkpoint proteins. Here, we determined the role of p53 protein (gene name: TP53) in the regulation of PD-L1 expression in melanoma. METHODS: We analyzed publicly available mRNA and protein expression data from the cancer genome/proteome atlas and performed immunohistochemistry on tumors with known TP53 status. Constitutive and IFN-É£-induced PD-L1 expression upon p53 knockdown in wildtype, TP53-mutated or JAK2-overexpressing melanoma cells or in cells, in which p53 was rendered transcriptionally inactive by CRISPR/Cas9, was determined by immunoblot or flow cytometry. Similarly, PD-L1 expression was investigated after overexpression of a transcriptionally-impaired p53 (L22Q, W23S) in TP53-wt or a TP53-knockout melanoma cell line. Immunoblot was applied to analyze the IFN-É£ signaling pathway. RESULTS: For TP53-mutated tumors, an increased CD274 mRNA expression and a higher frequency of PD-L1 positivity was observed. Interestingly, positive correlations of IFNG mRNA and PD-L1 protein in both TP53-wt and -mutated samples and of p53 and PD-L1 protein suggest a non-transcriptional mode of action of p53. Indeed, cell line experiments revealed a diminished IFN-É£-induced PD-L1 expression upon p53 knockdown in both wildtype and TP53-mutated melanoma cells, which was not the case when p53 wildtype protein was rendered transcriptionally inactive or by ectopic expression of p53L22Q,W23S, a transcriptionally-impaired variant, in TP53-wt cells. Accordingly, expression of p53L22Q,W23S in a TP53-knockout melanoma cell line boosted IFN-É£-induced PD-L1 expression. The impaired PD-L1-inducibility after p53 knockdown was associated with a reduced JAK2 expression in the cells and was almost abrogated by JAK2 overexpression. CONCLUSIONS: While having only a small impact on basal PD-L1 expression, both wildtype and mutated p53 play an important positive role for IFN-É£-induced PD-L1 expression in melanoma cells by supporting JAK2 expression. Future studies should address, whether p53 expression levels might influence response to anti-PD-1 immunotherapy.


Asunto(s)
Antígeno B7-H1/genética , Regulación Neoplásica de la Expresión Génica , Interferón gamma/metabolismo , Melanoma/genética , Melanoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Edición Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Marcación de Gen , Humanos , Interferón gamma/farmacología , Melanoma/inmunología , ARN Interferente Pequeño/genética , Transducción de Señal
10.
Sci Rep ; 9(1): 8333, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171812

RESUMEN

Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d-/- mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2-/- mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2-/- and Unc13d-/- mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation.


Asunto(s)
Plaquetas/citología , Proteínas Sanguíneas/genética , Proteínas de la Membrana/genética , Deficiencia de Almacenamiento del Pool Plaquetario/genética , Zinc/metabolismo , Adolescente , Adulto , Animales , Coagulación Sanguínea , Niño , Citosol/metabolismo , Femenino , Fibrina/química , Síndrome de Plaquetas Grises/genética , Voluntarios Sanos , Síndrome de Hermanski-Pudlak/genética , Homeostasis , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Nefelometría y Turbidimetría , Activación Plaquetaria
11.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1567-1578, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30905785

RESUMEN

OBJECTIVE: Hypovitaminosis D is common in the obese population and patients suffering from obesity-associated disorders such as type 2 diabetes and fatty liver disease, resulting in suggestions for vitamin D supplementation as a potential therapeutic option. However, the pathomechanistic contribution of the vitamin D-vitamin D receptor (VDR) axis to metabolic disorders is largely unknown. METHODS: We analyzed the pathophysiological role of global and intestinal VDR signaling in diet-induced obesity (DIO) using global Vdr-/- mice and mice re-expressing an intestine-specific human VDR transgene in the Vdr deficient background (Vdr-/- hTg). RESULTS: Vdr-/- mice were protected from DIO, hepatosteatosis and metabolic inflammation in adipose tissue and liver. Furthermore, Vdr-/- mice displayed a decreased adipose tissue lipoprotein lipase (LPL) activity and a reduced capacity to harvest triglycerides from the circulation. Intriguingly, all these phenotypes were partially reversed in Vdr-/- hTg animals. This clearly suggested an intestine-based VDR activity on systemic lipid homeostasis. Scrutinizing this hypothesis, we identified the potent LPL inhibitor angiopoietin-like 4 (Angptl4) as a novel transcriptional target of VDR. CONCLUSION: Our study suggests a VDR-mediated metabolic cross-talk between gut and adipose tissue, which significantly contributes to systemic lipid homeostasis. These results have important implications for use of the intestinal VDR as a therapeutic target for obesity and associated disorders.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/genética , Hígado Graso/genética , Mucosa Intestinal/metabolismo , Lipoproteína Lipasa/genética , Hígado/metabolismo , Receptores de Calcitriol/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Anciano , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Estudios de Cohortes , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación , Mucosa Intestinal/patología , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , Persona de Mediana Edad , Receptores de Calcitriol/deficiencia , Transducción de Señal , Transcripción Genética , Transgenes , Triglicéridos/metabolismo
12.
Nutrients ; 11(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609782

RESUMEN

Serum vitamin D levels negatively correlate with obesity and associated disorders such as non-alcoholic steatohepatitis (NASH). However, the mechanisms linking low vitamin D (VD) status to disease progression are not completely understood. In this study, we analyzed the effect of VD treatment on NASH in mice. C57BL6/J mice were fed a high-fat/high-sugar diet (HFSD) containing low amounts of VD for 16 weeks to induce obesity, NASH and liver fibrosis. The effects of preventive and interventional VD treatment were studied on the level of liver histology and hepatic/intestinal gene expression. Interestingly, preventive and to a lesser extent also interventional VD treatment resulted in improvements of liver histology. This included a significant decrease of steatosis, a trend towards lower non-alcoholic fatty liver disease (NAFLD) activity score and a slight non-significant decrease of fibrosis in the preventive treatment group. In line with these changes, preventive VD treatment reduced the hepatic expression of lipogenic, inflammatory and pro-fibrotic genes. Notably, these beneficial effects occurred in conjunction with a reduction of intestinal inflammation. Together, our observations suggest that timely initiation of VD supplementation (preventive vs. interventional) is a critical determinant of treatment outcome in NASH. In the applied animal model, the improvements of liver histology occurred in conjunction with reduced inflammation in the gut, suggesting a potential relevance of vitamin D as a therapeutic agent acting on the gut⁻liver axis.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/administración & dosificación , Obesidad/inducido químicamente , Vitamina D/uso terapéutico , Animales , Glucemia/efectos de los fármacos , Composición Corporal , Peso Corporal/efectos de los fármacos , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/tratamiento farmacológico , Intestinos/efectos de los fármacos , Intestinos/fisiología , Hígado/anatomía & histología , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Biochim Biophys Acta Mol Basis Dis ; 1865(5): 943-953, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29990551

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder closely linked to obesity, hyperlipidemia and type 2 diabetes and is increasingly recognized as a major health problem in many parts of the world. While early stages of NAFLD are characterized by a bland accumulation of fat (steatosis) in hepatocytes, the disease can progress to non-alcoholic steatohepatitis (NASH) which involves chronic liver inflammation, tissue damage and fibrosis and can ultimately lead to end-stage liver disease including cirrhosis and cancer. As no approved pharmacological treatment for NAFLD exists today, there is an urgent need to identify promising pharmacological targets and develop future therapies. For this purpose, basic and translational research in NAFLD animal models is indispensable. While a large number of diverse animal models are currently used in the field, there is an ongoing challenge to identify those models that mirror human pathology the closest to allow good translation of obtained results into further clinical development. This review is meant to provide a concise overview of the most relevant NAFLD animal models currently available and will discuss the strengths and weaknesses of these models with regard to their comparability to human disease conditions.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Humanos , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
14.
United European Gastroenterol J ; 6(10): 1496-1507, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30574320

RESUMEN

BACKGROUND: Intestinal microbiota and their metabolites (e.g. short-chain fatty acids (SCFAs)) may influence nonalcoholic fatty liver disease (NAFLD). OBJECTIVE: The objective of this article is to analyze gut bacterial diversity together with fecal SCFA concentrations and immunophenotyping of peripheral blood in histology-proven NAFLD patients. METHODS: Thirty-two NAFLD patients (14 nonalcoholic fatty liver (NAFL), 18 nonalcoholic steatohepatitis (NASH)) and 27 healthy controls (HCs)) were included in this study. Bacterial communities in feces were profiled by 16S ribosomal RNA gene sequencing of the V3-V4 region. Fecal SCFA levels were analyzed by high-performance liquid chromatography. Fluorescence-activated cell sorting analysis was performed of peripheral blood mononuclear cells. RESULTS: NASH patients were characterized by higher abundance of Fusobacteria and Fusobacteriaceae compared to NAFL and HCs. Conforming to our finding that NAFLD patients had higher fecal acetate and propionate levels, taxonomical differences of fecal bacteria were dominated by SCFA-producing bacteria. Higher fecal propionate and acetate levels were associated with lower resting regulatory T-cells (rTregs) (CD4+CD45RA+CD25++) as well as higher Th17/rTreg ratio in peripheral blood as immunological characteristics of NASH patients. CONCLUSIONS: NASH patients are characterized by a different gut microbiome composition with higher fecal SCFA levels and higher abundance of SCFA-producing bacteria in NAFLD. These changes are associated with immunological features of disease progression. Our data suggest an important role of the intestinal microbiome and immunomodulatory bacterial metabolites in human NAFLD.

15.
J Leukoc Biol ; 104(5): 969-985, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30040142

RESUMEN

Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH 1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulation-mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexia-can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.


Asunto(s)
Antígeno B7-H1/inmunología , Interleucina-6/inmunología , Interleucinas/inmunología , Neoplasias/inmunología , Factor de Transcripción STAT1/inmunología , Escape del Tumor/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Interleucina-6/antagonistas & inhibidores , Transducción de Señal/inmunología
16.
J Immunol ; 200(8): 2529-2534, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29581357

RESUMEN

Cation homeostasis, in relation to various immune-suppressive diseases, is a novel field of investigation. Recently, patients with a loss-of-function mutation in magnesium transporter 1 (MAGT1) were reported to present a dysregulated Mg2+ homeostasis in T lymphocytes. Using Magt1-knockout mice (Magt1-/y ), we show that Mg2+ homeostasis was impaired in Magt1-/y B cells and Ca2+ influx was increased after BCR stimulation, whereas T and NK cell function was unaffected. Consequently, mutant B cells displayed an increased phosphorylation of BCR-related proteins differentially affecting protein kinase C activation. These in vitro findings translated into increased frequencies of CD19+ B cells and marginal zone B cells and decreased frequencies of plasma cells among CD45+ splenocytes in vivo. Altogether, our study demonstrates for the first time, to our knowledge, that abolished MAGT1 function causes imbalanced cation homeostasis and developmental responses in B cells. Therefore, this study might contribute to a further understanding of B cell-related pathologies.


Asunto(s)
Linfocitos B/metabolismo , Linfocitos B/fisiología , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Hematopoyesis/fisiología , Homeostasis/fisiología , Animales , Antígenos CD19/metabolismo , Calcio/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/fisiología , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa C/metabolismo , Transducción de Señal/fisiología , Linfocitos T/metabolismo , Linfocitos T/fisiología
17.
Arterioscler Thromb Vasc Biol ; 38(2): 344-352, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29146750

RESUMEN

OBJECTIVE: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic α-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg2+ and Ca2+ permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown. APPROACH AND RESULTS: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice (Trpm7R/R ) causes a marked signaling defect in platelets. Trpm7R/R platelets showed an impaired PIP2 (phosphatidylinositol-4,5-bisphosphate) metabolism and consequently reduced Ca2+ mobilization in response to stimulation of the major platelet receptors GPVI (glycoprotein VI), CLEC-2 (C-type lectin-like receptor), and PAR (protease-activated receptor). Altered phosphorylation of Syk (spleen tyrosine kinase) and phospholipase C γ2 and ß3 accounted for these global platelet activation defects. In addition, direct activation of STIM1 (stromal interaction molecule 1) with thapsigargin revealed a defective store-operated Ca2+ entry mechanism in the mutant platelets. These defects translated into an impaired platelet aggregate formation under flow and protection of the mice from arterial thrombosis and ischemic stroke in vivo. CONCLUSIONS: Our results identify TRPM7 kinase as a key modulator of phospholipase C signaling and store-operated Ca2+ entry in platelets. The protection of Trpm7R/R mice from acute ischemic disease without developing intracranial hemorrhage indicates that TRPM7 kinase might be a promising antithrombotic target.


Asunto(s)
Arteriopatías Oclusivas/sangre , Plaquetas/metabolismo , Señalización del Calcio , Calcio/sangre , Infarto de la Arteria Cerebral Media/sangre , Canales Catiónicos TRPM/sangre , Trombosis/sangre , Animales , Arteriopatías Oclusivas/genética , Arteriopatías Oclusivas/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Lectinas Tipo C/sangre , Ratones Mutantes , Fosfatidilinositol 4,5-Difosfato/sangre , Fosfolipasa C beta/sangre , Fosfolipasa C gamma/sangre , Fosforilación , Glicoproteínas de Membrana Plaquetaria/metabolismo , Mutación Puntual , Receptores Proteinasa-Activados/sangre , Molécula de Interacción Estromal 1/sangre , Sinaptofisina/sangre , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Trombosis/genética , Trombosis/patología
18.
J Cell Mol Med ; 21(11): 3087-3099, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28560754

RESUMEN

Interleukin (IL)-6-type cytokines have no direct antiviral activity; nevertheless, they display immune-modulatory functions. Oncostatin M (OSM), a member of the IL-6 family, has recently been shown to induce a distinct number of classical interferon stimulated genes (ISG). Most of them are involved in antigen processing and presentation. However, induction of retinoic acid-inducible gene (RIG)-I-like receptors (RLR) has not been investigated. Here we report that OSM has the capability to induce the expression of the DExD/H-Box RNA helicases RIG-I and melanoma differentiation antigen 5 (MDA5) as well as of the transcription factors interferon regulatory factor (IRF)1, IRF7 and IRF9 in primary fibroblasts. Induction of the helicases depends on tyrosine as well as serine phosphorylation of STAT1. Moreover, we could show that the OSM-induced STAT1 phosphorylation is predominantly counter-regulated by a strong STAT3-dependent SOCS3 induction, as Stat3 as well as Socs3 knock-down results in an enhanced and prolonged helicase and IRF expression. Other factors involved in regulation of STAT1 or IRF1 activity, like protein tyrosine phosphatase, non-receptor type 2 (PTPN2), promyelocytic leukaemia protein (PML) or small ubiquitin-related modifier 1 (SUMO1), play a minor role in OSM-mediated induction of RLR. Remarkably, OSM and interferon-γ (IFN-γ) synergize to mediate transcription of RLR and pre-treatment of fibroblasts with OSM fosters the type I interferon production in response to a subsequent encounter with double-stranded RNA. Together, these findings suggest that the OSM-induced JAK/STAT1 signalling is implicated in virus protection of non-professional immune cells and may cooperate with interferons to enhance RLR expression in these cells.


Asunto(s)
Proteína 58 DEAD Box/genética , Fibroblastos/efectos de los fármacos , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/genética , Oncostatina M/farmacología , Factor de Transcripción STAT1/genética , Línea Celular Tumoral , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Helicasa Inducida por Interferón IFIH1/antagonistas & inhibidores , Helicasa Inducida por Interferón IFIH1/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Interferón gamma/farmacología , Interleucina-6/farmacología , Factor Inhibidor de Leucemia/farmacología , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/inmunología , Lipopolisacáridos/farmacología , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Inmunológicos , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal , Piel/citología , Piel/efectos de los fármacos , Piel/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/inmunología
20.
Blood Adv ; 1(14): 947-960, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29296736

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) controls proliferation and survival of myeloid cells including monocytes. Here, we describe a time-dependent licensing process driven by GM-CSF in murine Ly6Chigh and human CD14+ monocytes that disables their inflammatory functions and promotes their conversion into suppressor cells. This 2-step licensing of monocytes requires activation of the AKT/mTOR/mTORC1 signaling cascade by GM-CSF followed by signaling through the interferon-γ receptor (IFN-γR)/interferon regulatory factor-1 (IRF-1) pathway. Only licensing-dependent adaptations in Toll-like receptor/inflammasome, IFN-γR, and phosphatidylinositol 3-kinase/AKT/mTOR signaling lead to stabilized expression of inducible nitric oxide synthase by mouse and indoleamine 2,3-dioxygenase (IDO) by human monocytes, which accounts for their suppressor activity. This study suggests various myeloid cells with characteristics similar to those described for monocytic myeloid-derived suppressor cells, Mreg, or suppressor macrophages may arise from licensed monocytes. Markers of GM-CSF-driven monocyte licensing, including p-Akt, p-mTOR, and p-S6, distinguish inflammatory monocytes from potentially suppressive monocytes in peripheral blood of patients with high-grade glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...