Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 18: 363-374, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31634682

RESUMEN

Long non-coding RNAs (lncRNAs) have potential as novel therapeutic targets in cardiovascular diseases, but detailed information about the intercellular lncRNA shuttling mechanisms in the heart is lacking. Here, we report an important novel crosstalk between cardiomyocytes and fibroblasts mediated by the transfer of lncRNA-enriched extracellular vesicles (EVs) in the context of cardiac ischemia. lncRNA profiling identified two hypoxia-sensitive lncRNAs: ENSMUST00000122745 was predominantly found in small EVs, whereas lncRNA Neat1 was enriched in large EVs in vitro and in vivo. Vesicles were taken up by fibroblasts, triggering expression of profibrotic genes. In addition, lncRNA Neat1 was transcriptionally regulated by P53 under basal conditions and by HIF2A during hypoxia. The function of Neat1 was further elucidated in vitro and in vivo. Silencing of Neat1 in vitro revealed that Neat1 was indispensable for fibroblast and cardiomyocyte survival and affected fibroblast functions (reduced migration capacity, stalled cell cycle, and decreased expression of fibrotic genes). Of translational importance, genetic loss of Neat1 in vivo resulted in an impaired heart function after myocardial infarction highlighting its translational relevance.

2.
Noncoding RNA Res ; 3(3): 118-130, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30175285

RESUMEN

Following completion of the human genome, it became evident that the majority of our DNA is transcribed into non-coding RNAs (ncRNAs) instead of protein-coding messenger RNA. Deciphering the function of these ncRNAs, including both small- and long ncRNAs (lncRNAs), is an emerging field of research. LncRNAs have been associated with many disorders and a number have been identified as key regulators in the development and progression of disease, including cardiovascular disease (CVD). CVD causes millions of deaths worldwide, annually. Risk factors include coronary artery disease, high blood pressure and ageing. In this review, we will focus on the roles of lncRNAs in the cellular and molecular processes that underlie the development of CVD: cardiomyocyte hypertrophy, fibrosis, inflammation, vascular disease and ageing. Finally, we discuss the biomarker and therapeutic potential of lncRNAs.

3.
PLoS One ; 12(2): e0170458, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28158196

RESUMEN

Mitochondrial dysfunction contributes to myriad monogenic and complex pathologies. To understand the underlying mechanisms, it is essential to define the full complement of proteins that modulate mitochondrial function. To identify such proteins, we performed a meta-analysis of publicly available gene expression data. Gene co-expression analysis of a large and heterogeneous compendium of microarray data nominated a sub-population of transcripts that whilst highly correlated with known mitochondrial protein-encoding transcripts (MPETs), are not themselves recognized as generating proteins either localized to the mitochondrion or pertinent to functions therein. To focus the analysis on a medically-important condition with a strong yet incompletely understood mitochondrial component, candidates were cross-referenced with an MPET-enriched module independently generated via genome-wide co-expression network analysis of a human heart failure gene expression dataset. The strongest uncharacterized candidate in the analysis was Leucine Rich Repeat Containing 2 (LRRC2). LRRC2 was found to be localized to the mitochondria in human cells and transcriptionally-regulated by the mitochondrial master regulator Pgc-1α. We report that Lrrc2 transcript abundance correlates with that of ß-MHC, a canonical marker of cardiac hypertrophy in humans and experimentally demonstrated an elevation in Lrrc2 transcript in in vitro and in vivo rodent models of cardiac hypertrophy as well as in patients with dilated cardiomyopathy. RNAi-mediated Lrrc2 knockdown in a rat-derived cardiomyocyte cell line resulted in enhanced expression of canonical hypertrophic biomarkers as well as increased mitochondrial mass in the context of increased Pgc-1α expression. In conclusion, our meta-analysis represents a simple yet powerful springboard for the nomination of putative mitochondrially-pertinent proteins relevant to cardiac function and enabled the identification of LRRC2 as a novel mitochondrially-relevant protein and regulator of the hypertrophic response.


Asunto(s)
Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Transcriptoma/genética , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ratas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
PLoS One ; 11(2): e0150236, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26919721

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1) is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC) in mice. RESULTS: Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001) but to a similar extend also in Malat-1 knockout (KO) mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01) with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01) but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05). Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio; sham: 2.97±0.26, TAC 1.57±0.40; p<0.0001) and KO mice (sham: 3.64±0.37; TAC: 2.24±0.76; p<0.0001) and interestingly differed between genotypes both at baseline and after pressure overload (p<0.05 each). CONCLUSION: These findings confirm a role for the lncRNA Malat-1 in mRNA splicing. However, no critical role for Malat-1 was found in pressure overload-induced heart failure in mice, despite its reported role in vascularization, ERK/MAPK signaling, and regulation of miR-133.


Asunto(s)
Cardiomegalia/genética , Insuficiencia Cardíaca/genética , Empalme del ARN/genética , ARN Largo no Codificante/fisiología , Remodelación Ventricular/genética , Proteínas Adaptadoras Transductoras de Señales , Angiotensina II/metabolismo , Angiotensina II/toxicidad , Animales , Aorta Torácica , Cardiomegalia/etiología , Constricción Patológica/complicaciones , Cruzamientos Genéticos , Proteínas Fetales/biosíntesis , Proteínas Fetales/genética , Regulación de la Expresión Génica/genética , Insuficiencia Cardíaca/etiología , Heterocigoto , Ligadura , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Presión , Proteínas/genética , Proteínas/metabolismo , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA