Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Dermatol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916477

RESUMEN

BACKGROUND: Basal cell carcinoma (BCC) is the most frequently diagnosed skin cancer and the most common malignancy in humans. Different morphological subtypes of BCC are associated with low- or high-risk of recurrence and aggressiveness, but the underlying biology of how the individual subtypes arise remains largely unknown. Because the majority of BCCs appear to arise from mutations in the same pathway, we hypothesized that BCC development, growth and invasive potential is also influenced by the tumor microenvironment and in particular by cancer-associated fibroblasts (CAFs) and their secreted factors. OBJECTIVE: We aimed to characterize the stroma of the different BCC subtypes with a focus on CAF populations. METHODS: To investigate the stromal features of the different BCC subtypes, we applied laser-capture microdissection (LCM) followed by RNA sequencing. A cohort of 15 BCC samples from 5 different "pure" subtypes (superficial, nodular, micronodular, sclerosing and basosquamous; n=3 each) were selected and included in the analysis. Healthy skin was used as a control (n=6). We confirmed the results by immunohistochemistry. We validated our findings in two independent, public single-cell RNA sequencing (scRNAseq) datasets and by RNAscope. RESULTS: The stroma of the different BCC subtypes have distinct gene expression signatures. Nodular and micronodular seem to have the most similar signatures, while superficial and sclerosing the most different. By comparing low- and high-risk BCC subtypes, we observed that Collagen 10A1 (COL10A1) is overexpressed in the stroma of sclerosing/infiltrative and basosquamous but not micronodular high-risk subtypes. Those findings were confirmed by immunohistochemistry in a cohort of 89 different BCC and 13 healthy skin samples. Moreover, scRNAseq analysis of BCCs of two independent datasets showed that the COL10A1-expressing population of cells is associated with the stroma adjacent to invasive BCC and shows extracellular matrix remodeling features. CONCLUSION: We identified COL10A1 as a marker of high-risk BCC, in particular of the sclerosing/infiltrative and basosquamous subtypes. We demonstrated at the single cell level that COL10A1 is expressed by a specific CAF population associated with the stroma of invasive BCC. This opens up new tailored treatment options as well as a new prognostic biomarker for BCC progression.

2.
EMBO Rep ; 23(9): e54762, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35899551

RESUMEN

MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression via direct base pairing with their mRNA targets. Previous works suggest that up to 60% of mammalian transcripts might be subject to miRNA-mediated regulation, but it remains largely unknown which fraction of these interactions are functional in a specific cellular context. Here, we integrate transcriptome data from a set of miRNA-depleted mouse embryonic stem cell (mESC) lines with published miRNA interaction predictions and AGO-binding profiles. Using this integrative approach, combined with molecular validation data, we present evidence that < 10% of expressed genes are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of the stem cell-specific miR-290-295 cluster target genes identify TFAP4 as an important transcription factor for early development. The extensive datasets developed in this study will support the development of improved predictive models for miRNA-mRNA functional interactions.


Asunto(s)
MicroARNs , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Stem Cell Reports ; 17(5): 1070-1080, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452597

RESUMEN

The Argonaute proteins (AGOs) are well known for their role in post-transcriptional gene silencing in the microRNA (miRNA) pathway. Here we show that in mouse embryonic stem cells, AGO1&2 serve additional functions that go beyond the miRNA pathway. Through the combined deletion of both Agos, we identified a specific set of genes that are uniquely regulated by AGOs but not by the other miRNA biogenesis factors. Deletion of Ago2&1 caused a global reduction of the repressive histone mark H3K27me3 due to downregulation at protein levels of Polycomb repressive complex 2 components. By integrating chromatin accessibility, prediction of transcription factor binding sites, and chromatin immunoprecipitation sequencing data, we identified the pluripotency factor KLF4 as a key modulator of AGO1&2-regulated genes. Our findings revealed a novel axis of gene regulation that is mediated by noncanonical functions of AGO proteins that affect chromatin states and gene expression using mechanisms outside the miRNA pathway.


Asunto(s)
Proteínas Argonautas , MicroARNs , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Cromatina/genética , Factor 4 Similar a Kruppel/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/genética
4.
Life Sci Alliance ; 5(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35236760

RESUMEN

Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.


Asunto(s)
MicroARNs , Células Madre Embrionarias de Ratones , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Homólogo de la Proteína Chromobox 5 , Factores Eucarióticos de Iniciación , Heterocromatina/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Interferencia de ARN , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA