Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Life Sci ; 351: 122851, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897345

RESUMEN

AIMS: Pannexin-1 (PANX1) is a hemichannel that releases ATP upon opening, initiating inflammation, cell proliferation, and migration. However, the role of PANX1 channels in colon cancer remains poorly understood, thus constituting the focus of this study. MAIN METHODS: PANX1 mRNA expression was analyzed using multiple cancer databases. PANX1 protein expression and distribution were evaluated by immunohistochemistry on primary tumor tissue and non-tumor colonic mucosa from colon cancer patients. PANX1 inhibitors (probenecid or 10Panx) were used to assess colon cancer cell lines viability. To study the role of PANX1 in vivo, a subcutaneous xenograft model using HCT116 cells was performed in BALB/c NOD/SCID immunodeficient mice to evaluate tumor growth under PANX1 inhibition using probenecid. KEY FINDINGS: PANX1 mRNA was upregulated in colon cancer tissue compared to non-tumor colonic mucosa. Elevated PANX1 mRNA expression in tumors correlated with worse disease-free survival. PANX1 protein abundance was increased on tumor cells compared to epithelial cells in paired samples, in a cancer stage-dependent manner. In vitro and in vivo experiments indicated that blocking PANX1 reduced cell viability and tumor growth. SIGNIFICANCE: PANX1 can be used as a biomarker of colon cancer progression and blocking PANX1 channel opening could be used as a potential therapeutic strategy against this disease.


Asunto(s)
Neoplasias del Colon , Conexinas , Progresión de la Enfermedad , Proteínas del Tejido Nervioso , Animales , Femenino , Humanos , Masculino , Ratones , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Conexinas/metabolismo , Conexinas/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Probenecid/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Gut ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580386

RESUMEN

OBJECTIVE: Improving patient selection and development of biological therapies such as vedolizumab in IBD requires a thorough understanding of the mechanism of action and target binding, thereby providing individualised treatment strategies. We aimed to visualise the macroscopic and microscopic distribution of intravenous injected fluorescently labelled vedolizumab, vedo-800CW, and identify its target cells using fluorescence molecular imaging (FMI). DESIGN: Forty three FMI procedures were performed, which consisted of macroscopic in vivo assessment during endoscopy, followed by macroscopic and microscopic ex vivo imaging. In phase A, patients received an intravenous dose of 4.5 mg, 15 mg vedo-800CW or no tracer prior to endoscopy. In phase B, patients received 15 mg vedo-800CW preceded by an unlabelled (sub)therapeutic dose of vedolizumab. RESULTS: FMI quantification showed a dose-dependent increase in vedo-800CW fluorescence intensity in inflamed tissues, with 15 mg (153.7 au (132.3-163.7)) as the most suitable tracer dose compared with 4.5 mg (55.3 au (33.6-78.2)) (p=0.0002). Moreover, the fluorescence signal decreased by 61% when vedo-800CW was administered after a therapeutic dose of unlabelled vedolizumab, suggesting target saturation in the inflamed tissue. Fluorescence microscopy and immunostaining showed that vedolizumab penetrated the inflamed mucosa and was associated with several immune cell types, most prominently with plasma cells. CONCLUSION: These results indicate the potential of FMI to determine the local distribution of drugs in the inflamed target tissue and identify drug target cells, providing new insights into targeted agents for their use in IBD. TRIAL REGISTRATION NUMBER: NCT04112212.

4.
Food Funct ; 15(2): 569-579, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38170495

RESUMEN

This study investigates the anti-inflammatory effects of pectins with different degrees of methyl esterification (DM) on intestinal epithelial cells (IECs) expressing low and high levels of TLR2. It also studies the influence of soluble TLR2 (sTLR2) which may be enhanced in patients with inflammatory bowel syndrome on the inflammation-attenuating effects of pectins. Also, it examines the impact of pectins on tight junction gene expression in IECs. Lemon pectins with DM18 and DM88 were characterized, and their effects on TLR2-1-induced IL8 gene expression and secretion were investigated in low-TLR2 expressing Caco-2 and high-TLR2 expressing DLD-1 cells. The results demonstrate that both DM18 and DM88 pectins can counteract TLR2-1-induced IL-8 expression and secretion, with more pronounced effects observed in DLD-1 cells expressing high levels of TLR2. Furthermore, the presence of sTLR2 does not interfere with the attenuating effects of low DM18 pectin and may even support its anti-inflammatory effects in Caco-2 cells. The impact of pectins and sTLR2 on tight junction gene expression also demonstrates cell-type-dependent effects. Overall, these findings suggest that low DM pectins possess potent anti-inflammatory properties and may influence tight junction gene expression in IECs, thereby contributing to the maintenance of gut homeostasis.


Asunto(s)
Interleucina-8 , Receptor Toll-Like 2 , Humanos , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células CACO-2 , Uniones Estrechas/metabolismo , Esterificación , Expresión Génica , Pectinas/farmacología , Pectinas/metabolismo , Antiinflamatorios/metabolismo
5.
J Autoimmun ; 138: 103037, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229808

RESUMEN

Salivary secretory dysfunction in SS-patients is associated with altered proteostasis, upregulation of ATF6α and components of the ERAD complex, such as SEL1L, and downregulation of XBP-1s and GRP78. Hsa-miR-424-5p is downregulated and hsa-miR-513c-3p is overexpressed in salivary glands from SS-patients. These miRNAs emerged as candidates that could regulate ATF6/SEL1L and XBP-1s/GRP78 levels, respectively. This study aimed to evaluate the effect of IFN-γ on hsa-miR-424-5p and hsa-miR-513c-3p expression and how these miRNAs regulate their targets. In labial salivary glands (LSG) biopsies from 9 SS-patients and 7 control subjects and IFN-γ-stimulated 3D-acini were analyzed. hsa-miR-424-5p and hsa-miR-513c-3p levels were measured by TaqMan assays and their localization by ISH. mRNA, protein levels, and localization of ATF6, SEL1L, HERP, XBP-1s and GRP78 were determined by qPCR, Western blot, or immunofluorescence. Functional and interaction assays were also performed. In LSGs from SS-patients and IFN-γ-stimulated 3D-acini, hsa-miR-424-5p was downregulated and ATF6α and SEL1L were upregulated. ATF6α and SEL1L were decreased after hsa-miR-424-5p overexpression, while ATF6α, SEL1L and HERP increased after hsa-miR-424-5p silencing. Interaction assays revealed that hsa-miR-424-5p targets ATF6α directly. hsa-miR-513c-3p was upregulated and XBP-1s and GRP78 were downregulated. XBP-1s and GRP78 were decreased after hsa-miR-513c-3p overexpression, while increases in XBP-1s and GRP78 were observed after hsa-miR-513c-3p silencing. Furthermore, we determined that hsa-miR-513c-3p targets XBP-1s directly. Significant correlations were found between both miRNA levels and clinical parameters. In conclusion, IFN-γ-dependent hsa-miR-424-5p and hsa-miR-513c-3p levels affect the expression of important factors involved in cellular proteostasis that control secretory function in LSG from SS-patients.


Asunto(s)
MicroARNs , Glándulas Salivales , Síndrome de Sjögren , Humanos , Chaperón BiP del Retículo Endoplásmico , Interferón gamma/genética , Interferón gamma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas/genética , Proteínas/metabolismo , Glándulas Salivales/metabolismo , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo
6.
Pharmaceutics ; 15(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242775

RESUMEN

From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.

7.
Front Med (Lausanne) ; 10: 1118703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035319

RESUMEN

Introduction: Primary Sjögren's syndrome (SS) is an autoimmune exocrinopathy that affects the structure and function of salivary and lachrymal glands. Labial salivary gland (LSG) acinar cells from SS patients lose cellular homeostasis and experience endoplasmic reticulum and oxidative stress. The integrated cellular stress response (ISR) is an adaptive pathway essential for restoring homeostasis against various stress-inducing factors, including pro-inflammatory cytokines, and endoplasmic reticulum and oxidative stress. ISR activation leads eIF2α phosphorylation, which transiently blocks protein synthesis while allowing the ATF4 expression, which induces a gene expression program that seeks to optimize cellular recovery. PKR, HRI, GCN2, and PERK are the four sentinel stress kinases that control eIF2α phosphorylation. Dysregulation and chronic activation of ISR signaling have pathologic consequences associated with inflammation. Methods: Here, we analyzed the activation of the ISR in LSGs of SS-patients and non-SS sicca controls, determining the mRNA, protein, and phosphorylated-protein levels of key ISR components, as well as the expression of some of ATF4 targets. Moreover, we performed a qualitative characterization of the distribution of ISR components in LSGs from both groups and evaluated if their levels correlate with clinical parameters. Results: We observed that the four ISR sensors are expressed in LSGs of both groups. However, only PKR and PERK showed increased expression and/or activation in LSGs from SS-patients. eIF2α and p-eIF2α protein levels significantly increased in SS-patients; meanwhile components of the PP1c complex responsible for eIF2α dephosphorylation decreased. ATF4 mRNA levels were decreased in LSGs from SS-patients along with hypermethylation of the ATF4 promoter. Despite low mRNA levels, SS-patients showed increased levels of ATF4 protein and ATF4-target genes involved in the antioxidant response. The acinar cells of SS-patients showed increased staining intensity for PKR, p-PKR, p-PERK, p-eIF2α, ATF4, xCT, CHOP, and NRF2. Autoantibodies, focus score, and ESSDAI were correlated with p-PERK/PERK ratio and ATF4 protein levels. Discussion: In summary, the results showed an increased ISR activation in LSGs of SS-patients. The increased protein levels of ATF4 and ATF4-target genes involved in the redox homeostasis could be part of a rescue response against the various stressful conditions to which the LSGs of SS-patients are subjected and promote cell survival.

8.
Cancers (Basel) ; 16(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38201508

RESUMEN

Chronic inflammation influences the tumor immune microenvironment (TIME) in high-grade serous ovarian cancer (HGSOC). Specifically, cyclooxygenase-2 (COX-2) overexpression promotes cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) expression. Notably, elevated COX-2 levels in the TIME have been associated with reduced response to anti-CTLA-4 immunotherapy. However, the precise impact of COX-2, encoded by PTGS2, on the immune profile remains unknown. To address this, we performed an integrated bioinformatics analysis using data from the HGSOC cohorts (TCGA-OV, n = 368; Australian cohort AOCS, n = 80; GSE26193, n = 62; and GSE30161, n = 45). Employing Gene Set Variation Analysis (GSVA), MIXTURE and Ecotyper cell deconvolution algorithms, we concluded that COX-2 was linked to immune cell ecosystems associated with shorter survival, cell dysfunction and lower NK cell effector cytotoxicity capacity. Next, we validated these results by characterizing circulating NK cells from HGSOC patients through flow cytometry and cytotoxic assays while undergoing COX-2 and CTLA-4 blockade. The blockade of COX-2 improved the cytotoxic capacity of NK cells against HGSOC cell lines. Our findings underscore the relevance of COX-2 in shaping the TIME and suggest its potential as a prognostic indicator and therapeutic target. Increased COX-2 expression may hamper the effectivity of immunotherapies that require NK cell effector function. These results provide a foundation for experimental validation and clinical trials investigating combined therapies targeting COX-2 and CTLA-4 in HGSOC.

9.
Front Immunol ; 13: 1028953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466902

RESUMEN

Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.


Asunto(s)
Inflamasomas , Enfermedades Inflamatorias del Intestino , Humanos , Mitocondrias , Colesterol , Enfermedad Crónica , Glucólisis , Ácido Pirúvico
10.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012279

RESUMEN

Adherent-invasive E. coli (AIEC) is a pathotype associated with the etiopathogenesis of Crohn's disease (CD), albeit with an as-yet unclear role. The main pathogenic mechanisms described for AIEC are adherence to epithelial cells, invasion of epithelial cells, and survival and replication within macrophages. A few virulence factors have been described as participating directly in these phenotypes, most of which have been evaluated only in AIEC reference strains. To date, no molecular markers have been identified that can differentiate AIEC from other E. coli pathotypes, so these strains are currently identified based on the phenotypic characterization of their pathogenic mechanisms. The identification of putative AIEC molecular markers could be beneficial not only from the diagnostic point of view but could also help in better understanding the determinants of AIEC pathogenicity. The objective of this study was to identify molecular markers that contribute to the screening of AIEC strains. For this, we characterized outer membrane protein (OMP) profiles in a group of AIEC strains and compared them with the commensal E. coli HS strain. Notably, we found a set of OMPs that were present in the AIEC strains but absent in the HS strain. Moreover, we developed a PCR assay and performed phylogenomic analyses to determine the frequency and distribution of the genes coding for these OMPs in a larger collection of AIEC and other E. coli strains. As result, it was found that three genes (chuA, eefC, and fitA) are widely distributed and significantly correlated with AIEC strains, whereas they are infrequent in commensal and diarrheagenic E. coli strains (DEC). Additional studies are needed to validate these markers in diverse strain collections from different geographical regions, as well as investigate their possible role in AIEC pathogenicity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biomarcadores/metabolismo , Escherichia coli/metabolismo , Infecciones por Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de la Membrana/metabolismo
11.
Cells ; 11(12)2022 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741034

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GRß) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GRiKO) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker.


Asunto(s)
Colitis Ulcerosa , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Esteroides/metabolismo
12.
Front Immunol ; 13: 870094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432384

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs (sRNA), that alter gene expression by binding to target messenger RNAs (mRNAs) and repressing translation. Dysregulated miRNA expression has been implicated in the pathogenesis of autoimmune diseases such as Sjögren's syndrome (SS). The aim of this study was to characterize the global profile of sRNAs in labial salivary glands (LSG) from SS-patients and to validate potential miRNA candidates implicated in glandular inflammation. LSG from 21 SS-patients and 9 sicca controls were analyzed. A global next generation sequencing (NGS)-based sRNA profiling approach was employed to identify direct targets whereby differentially expressed miRNAs were predicted using bioinformatics tools. miRNA levels were validated by TaqMan and target mRNA levels were determined by quantitative real-time PCR. We also performed in vitro assays using recombinant TNF-α. NGS shows that ~30% of sRNAs were miRNAs. In comparison with samples from sicca controls, four miRNAs were found differentially expressed in LSG from SS-patients with low focus score (LFS) and 18 from SS-patients with high focus score (HFS). The miRNA with the most significant changes identified by NGS was hsa-miR-181d-5p and downregulation was confirmed by TaqMan analysis. Levels of TNF-α mRNA, a direct target of hsa-miR-181d-5p, were significantly increased and negatively correlated with hsa-miR-181d-5p presence. Moreover, positive correlations between TNF-α transcript levels, focus score, ESSDAI, and autoantibody levels were also detected. Furthermore, TNF-α stimulation decreased hsa-miR-181d-5p levels in vitro. Downregulation of hsa-miR-181d-5p in LSG from SS-patients could contribute to the glandular pro-inflammatory environment by deregulation of its direct target TNF-α. Further dissection of the pathophysiological mechanisms underlying the hsa-miR-181d-5p-mediated action in inflammatory conditions could be useful to evaluate the benefits of increasing hsa-miR-181d-5p levels for restoration of salivary gland epithelial cell architecture and function.


Asunto(s)
MicroARNs , Síndrome de Sjögren , Regulación hacia Abajo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Síndrome de Sjögren/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
Front Immunol ; 12: 769059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745145

RESUMEN

The prognosis of severe COVID-19 patients has motivated research communities to uncover mechanisms of SARS-CoV-2 pathogenesis also on a regional level. In this work, we aimed to understand the immunological dynamics of severe COVID-19 patients with different degrees of illness, and upon long-term recovery. We analyzed immune cellular subsets and SARS-CoV-2-specific antibody isotypes of 66 COVID-19 patients admitted to the Hospital Clínico Universidad de Chile, which were categorized according to the WHO ten-point clinical progression score. These included 29 moderate patients (score 4-5) and 37 severe patients under either high flow oxygen nasal cannula (18 patients, score 6), or invasive mechanical ventilation (19 patients, score 7-9), plus 28 convalescent patients and 28 healthy controls. Furthermore, six severe patients that recovered from the disease were longitudinally followed over 300 days. Our data indicate that severe COVID-19 patients display increased frequencies of plasmablasts, activated T cells and SARS-CoV-2-specific antibodies compared to moderate and convalescent patients. Remarkably, within the severe COVID-19 group, patients rapidly progressing into invasive mechanical ventilation show higher frequencies of plasmablasts, monocytes, eosinophils, Th1 cells and SARS-CoV-2-specific IgG than patients under high flow oxygen nasal cannula. These findings demonstrate that severe COVID-19 patients progressing into invasive mechanical ventilation show a distinctive type of immunity. In addition, patients that recover from severe COVID-19 begin to regain normal proportions of immune cells 100 days after hospital discharge and maintain high levels of SARS-CoV-2-specific IgG throughout the study, which is an indicative sign of immunological memory. Thus, this work can provide useful information to better understand the diverse outcomes of severe COVID-19 pathogenesis.


Asunto(s)
COVID-19/inmunología , Eosinófilos/inmunología , Células Plasmáticas/inmunología , SARS-CoV-2/fisiología , Células TH1/inmunología , Anciano , Anticuerpos Antivirales/sangre , Convalecencia , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad Celular , Inmunoglobulina G/sangre , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
14.
Cent Eur J Immunol ; 46(2): 225-230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764791

RESUMEN

INTRODUCTION: Celiac disease (CD) is an autoimmune enteropathy triggered by gluten ingestion in genetically susceptible individuals. In CD, activation of the immune response causes damage of the intestinal mucosa, and a gluten-free diet (GFD) is the only available therapy. Intestinal damage can lead to an increase in the circulation of components of bacteria from the intestinal lumen, such as lipopolysaccharide (LPS). Soluble CD14 (sCD14) and lipopolysaccharide-binding protein (LBP) participate in the recognition of LPS, and their levels are altered in different pathologies. In the present study, the circulating levels of sCD14 and LBP from untreated CD patients were evaluated and compared to CD patients on a GFD and controls. MATERIAL AND METHODS: In total seventy-two adult patients with CD, twenty-three untreated CD patients and forty-nine on a GFD were included. In addition, fifty-five healthy individuals were included as controls. Additionally, the effect of LPS on sCD14 production by both normal and inflamed intestinal tissue culture was explored. RESULTS: Serum levels of sCD14 were found to be significantly increased in untreated CD patients compared to patients on a GFD and controls. In addition, we found that LPS induced the production of sCD14 by biopsies of intestinal tissue from untreated CD patients. CONCLUSIONS: The data from this study show that circulating levels of sCD14 are increased in the untreated CD patients compared to patients on a GFD. Our data show that LPS induces the production of sCD14 by the intestinal tissue from untreated CD patients.

15.
Anticancer Res ; 41(10): 4917-4928, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34593439

RESUMEN

BACKGROUND/AIM: The functions of interleukin 33 (IL-33) in cholangiocarcinoma (CCA) are unclear. This study aimed to evaluate the roles of IL-33 in CCA progression. MATERIALS AND METHODS: The effect of intracellular IL-33 using shIL-33 knocked down KKU-055 (IL-33KD-KKU-055) compared to parental (Pa) KKU-055 and extracellular IL-33 using recombinant human IL-33 (rhIL-33) treatment on the proliferation and invasion of CCA cells grown in 3D cultures was studied. Relevant markers were determined by western blot or ELISA. RESULTS: IL-33KD-KKU-055 cells showed increased proliferation and invasion in 3D cultures compared to Pa-KKU-055 cells, with NF-κB and IL-6 up-regulation. Treatment with 2 ng/ml rhIL-33 promoted Pa-KKU-055 cell proliferation by inducing NF-κB and IL-6 expressions. Upon GSK-3ß inactivation and increased nuclear full-length IL-33 (flIL-33), 20 ng/ml rhIL-33 had no effect on proliferation. Both 2 and 20 ng/ml rhIL-33 induced proliferation and invasion of IL-33-negative KKU-213 cells in 3D cultures, as well as NF-κB and IL-6 up-regulation. CONCLUSION: Intracellular and extracellular IL-33 have distinct roles in the mechanisms of CCA progression.


Asunto(s)
Neoplasias de los Conductos Biliares/prevención & control , Biomarcadores de Tumor/metabolismo , Colangiocarcinoma/prevención & control , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-33/farmacología , FN-kappa B/metabolismo , Apoptosis , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Biomarcadores de Tumor/genética , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , FN-kappa B/genética , Invasividad Neoplásica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Microb Cell ; 8(9): 223-238, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34527721

RESUMEN

Inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD), cause chronic inflammation of the gut, affecting millions of people worldwide. IBDs have been frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is generally characterized by an increase in abundance of Proteobacteria such as Escherichia coli, and a decrease in abundance of Firmicutes such as Faecalibacterium prausnitzii (an indicator of a healthy colonic microbiota). The mechanisms behind the development of IBDs and dysbiosis are incompletely understood. Using samples from colonic biopsies, we studied the mucosa-associated intestinal microbiota in Chilean and Spanish patients with IBD. In agreement with previous studies, microbiome comparison between IBD patients and non-IBD controls indicated that dysbiosis in these patients is characterized by an increase of pro-inflammatory bacteria (mostly Proteobacteria) and a decrease of commensal beneficial bacteria (mostly Firmicutes). Notably, bacteria typically residing on the mucosa of healthy individuals were mostly obligate anaerobes, whereas in the inflamed mucosa an increase of facultative anaerobe and aerobic bacteria was observed. We also identify potential co-occurring and mutually exclusive interactions between bacteria associated with the healthy and inflamed mucosa, which appear to be determined by the oxygen availability and the type of respiration. Finally, we identified a panel of bacterial biomarkers that allow the discrimination between eubiosis from dysbiosis with a high diagnostic performance (96% accurately), which could be used for the development of non-invasive diagnostic methods. Thus, this study is a step forward towards understanding the landscapes and alterations of mucosa-associated intestinal microbiota in patients with IBDs.

17.
J Immunol Res ; 2021: 8840066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34337083

RESUMEN

Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.


Asunto(s)
Neoplasias de la Mama/inmunología , Fibroblastos Asociados al Cáncer/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Escape del Tumor , Microambiente Tumoral/inmunología , Animales , Neoplasias de la Mama/patología , Comunicación Celular/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Front Immunol ; 12: 685837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149728

RESUMEN

Sjögren's syndrome (SS) is an autoimmune disease that mainly affects salivary glands (SG) and is characterized by overactivation of the type I interferon (IFN) pathway. Type I IFNs can decrease the levels of hsa-miR-145-5p, a miRNA with anti-inflammatory roles that is downregulated in SG from SS-patients. Two relevant targets of hsa-miR-145-5p, mucin 1 (MUC1) and toll-like receptor 4 (TLR4) are overexpressed in SS-patients and contribute to SG inflammation and dysfunction. This study aimed to evaluate if hsa-miR-145-5p modulates MUC1 and TLR4 overexpression in SG from SS-patients in a type I IFN dependent manner. Labial SG (LSG) biopsies from 9 SS-patients and 6 controls were analyzed. We determined hsa-miR-145-5p levels by TaqMan assays and the mRNA levels of MUC1, TLR4, IFN-α, IFN-ß, and IFN-stimulated genes (MX1, IFIT1, IFI44, and IFI44L) by real time-PCR. We also performed in vitro assays using type I IFNs and chemically synthesized hsa-miR-145-5p mimics and inhibitors. We validated the decreased hsa-miR-145-5p levels in LSG from SS-patients, which inversely correlated with the type I IFN score, mRNA levels of IFN-ß, MUC1, TLR4, and clinical parameters of SS-patients (Ro/La autoantibodies and focus score). IFN-α or IFN-ß stimulation downregulated hsa-miR-145-5p and increased MUC1 and TLR4 mRNA levels. Hsa-miR-145-5p overexpression decreased MUC1 and TLR4 mRNA levels, while transfection with a hsa-miR-145-5p inhibitor increased mRNA levels. Our findings show that type I IFNs decrease hsa-miR-145-5p expression leading to upregulation of MUC1 and TLR4. Together, this suggests that type I interferon-dependent hsa-miR-145-5p downregulation contributes to the perpetuation of inflammation in LSG from SS-patients.


Asunto(s)
Interferón Tipo I/metabolismo , MicroARNs/metabolismo , Mucina-1/metabolismo , Síndrome de Sjögren/metabolismo , Receptor Toll-Like 4/metabolismo , Adulto , Regulación hacia Abajo , Femenino , Humanos , Inflamación/metabolismo , Masculino , MicroARNs/genética , Persona de Mediana Edad , Mucina-1/genética , Glándulas Salivales Menores/metabolismo , Síndrome de Sjögren/genética , Receptor Toll-Like 4/genética , Adulto Joven
19.
Front Immunol ; 12: 658354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122415

RESUMEN

The diverse and dynamic microbial community of the human gastrointestinal tract plays a vital role in health, with gut microbiota supporting the development and function of the gut immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system determine the individual health status, and any crosstalk disturbance may lead to chronic intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease. Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary bile acids. Also, tryptophan catabolites determine immune responses, such as through binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal surfaces and when activated enhances intestinal epithelial barrier function as well as regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major source of endogenous AhR ligand precursors and together with SCFAs and secondary bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we present an overview of host microbiota-epithelium- gut immunity crosstalk and review how microbial-derived metabolites contribute to host immune homeostasis. Also, we discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and how essential dietary components such as dietary fibers and bacterial tryptophan catabolites may contribute to intestinal and systemic homeostasis.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Ácidos y Sales Biliares/metabolismo , Fibras de la Dieta , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal/inmunología , Homeostasis , Interacciones Microbiota-Huesped/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo
20.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802759

RESUMEN

This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70-80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.


Asunto(s)
Butiratos/farmacología , Colon/patología , Homeostasis , Enfermedades Inflamatorias del Intestino/patología , Animales , Colon/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...