Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 290: 133305, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34929272

RESUMEN

The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Lacasa , Suelo , Contaminantes del Suelo/análisis , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...