Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(3): 101313, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39282079

RESUMEN

Mucopolysaccharidosis type IVB (MPSIVB) is a lysosomal storage disorder caused by ß-galactosidase (ß-GAL) deficiency characterized by severe skeletal and neurological alterations without approved treatments. To develop hematopoietic stem progenitor cell (HSPC) gene therapy (GT) for MPSIVB, we designed lentiviral vectors (LVs) encoding human ß-GAL to achieve supraphysiological release of the therapeutic enzyme in human HSPCs and metabolic correction of diseased cells. Transduced HSPCs displayed proper colony formation, proliferation, and differentiation capacity, but their progeny failed to release the enzyme at supraphysiological levels. Therefore, we tested alternative LVs to overexpress an enhanced ß-GAL deriving from murine (LV-enhGLB1) and human selectively mutated GLB1 sequences (LV-mutGLB1). Only human HSPCs transduced with LV-enhGLB1 overexpressed ß-GAL in vitro and in vivo without evidence of overexpression-related toxicity. Their hematopoietic progeny efficiently released ß-GAL, allowing the cross-correction of defective cells, including skeletal cells. We found that the low levels of human GLB1 mRNA in human hematopoietic cells and the improved stability of the enhanced ß-GAL contribute to the increased efficacy of LV-enhGLB1. Importantly, the enhanced ß-GAL enzyme showed physiological lysosomal trafficking in human cells and was not associated with increased immunogenicity in vitro. These results support the use of LV-enhGLB1 for further HSPC-GT development and future clinical translation to treat MPSIVB multisystem disease.

2.
Blood Adv ; 5(16): 3174-3187, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34424322

RESUMEN

Adenosine deaminase 2 deficiency (DADA2) is a rare inherited disorder that is caused by autosomal recessive mutations in the ADA2 gene. Clinical manifestations include early-onset lacunar strokes, vasculitis/vasculopathy, systemic inflammation, immunodeficiency, and hematologic defects. Anti-tumor necrosis factor therapy reduces strokes and systemic inflammation. Allogeneic hematopoietic stem/progenitor cell (HSPC) transplantation can ameliorate most disease manifestations, but patients are at risk for complications. Autologous HSPC gene therapy may be an alternative curative option for patients with DADA2. We designed a lentiviral vector encoding ADA2 (LV-ADA2) to genetically correct HSPCs. Lentiviral transduction allowed efficient delivery of the functional ADA2 enzyme into HSPCs from healthy donors. Supranormal ADA2 expression in human and mouse HSPCs did not affect their multipotency and engraftment potential in vivo. The LV-ADA2 induced stable ADA2 expression and corrected the enzymatic defect in HSPCs derived from DADA2 patients. Patients' HSPCs re-expressing ADA2 retained their potential to differentiate into erythroid and myeloid cells. Delivery of ADA2 enzymatic activity in patients' macrophages led to a complete rescue of the exaggerated inflammatory cytokine production. Our data indicate that HSPCs ectopically expressing ADA2 retain their multipotent differentiation ability, leading to functional correction of macrophage defects. Altogether, these findings support the implementation of HSPC gene therapy for DADA2.


Asunto(s)
Adenosina Desaminasa , Vasculitis , Adenosina Desaminasa/genética , Animales , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intercelular , Macrófagos , Ratones
3.
Hum Gene Ther ; 32(1-2): 66-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883113

RESUMEN

Hematopoietic stem cell gene therapy has become a successful therapeutic strategy for some inherited genetic disorders. Pre-clinical toxicity studies performed to support the human clinical trials using viral-mediated gene transfer and autologous hematopoietic stem and progenitor cell (HSPC) transplantation are complex and the use of mouse models of human diseases makes interpretation of the results challenging. In addition, they rely on the use of conditioning agents that must induce enough myeloablation to allow engraftment of transduced and transplanted HSPC. Busulfan and total body irradiation (TBI) are the most commonly used conditioning regimens in the mouse. Lenticular degeneration and atrophy of reproductive organs are expected histopathological changes. Proliferative and nonproliferative lesions can be observed with different incidence and distribution across strains and mouse models of diseases. The occurrence of these lesions can interfere with the interpretation of pre-clinical toxicity and tumorigenicity studies performed to support the human clinical studies. As such, it is important to be aware of the background incidence of lesions induced by different conditioning regimens. We review the histopathology results from seven long-term studies, five using TBI and two using busulfan.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Acondicionamiento Pretrasplante , Animales , Busulfano , Ciclofosfamida , Terapia Genética , Ratones , Irradiación Corporal Total
4.
J Clin Invest ; 129(4): 1566-1580, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30830876

RESUMEN

BACKGROUND: The human bone marrow (BM) niche contains a population of mesenchymal stromal cells (MSCs) that provide physical support and regulate hematopoietic stem cell (HSC) homeostasis. ß-Thalassemia (BT) is a hereditary disorder characterized by altered hemoglobin beta-chain synthesis amenable to allogeneic HSC transplantation and HSC gene therapy. Iron overload (IO) is a common complication in BT patients affecting several organs. However, data on the BM stromal compartment are scarce. METHODS: MSCs were isolated and characterized from BM aspirates of healthy donors (HDs) and BT patients. The state of IO was assessed and correlated with the presence of primitive MSCs in vitro and in vivo. Hematopoietic supportive capacity of MSCs was evaluated by transwell migration assay and 2D coculture of MSCs with human CD34+ HSCs. In vivo, the ability of MSCs to facilitate HSC engraftment was tested in a xenogenic transplant model, whereas the capacity to sustain human hematopoiesis was evaluated in humanized ossicle models. RESULTS: We report that, despite iron chelation, BT BM contains high levels of iron and ferritin, indicative of iron accumulation in the BM niche. We found a pauperization of the most primitive MSC pool caused by increased ROS production in vitro which impaired MSC stemness properties. We confirmed a reduced frequency of primitive MSCs in vivo in BT patients. We also discovered a weakened antioxidative response and diminished expression of BM niche-associated genes in BT-MSCs. This caused a functional impairment in MSC hematopoietic supportive capacity in vitro and in cotransplantation models. In addition, BT-MSCs failed to form a proper BM niche in humanized ossicle models. CONCLUSION: Our results suggest an impairment in the mesenchymal compartment of BT BM niche and highlight the need for novel strategies to target the niche to reduce IO and oxidative stress before transplantation. FUNDING: This work was supported by the SR-TIGET Core grant from Fondazione Telethon and by Ricerca Corrente.


Asunto(s)
Células de la Médula Ósea/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Estrés Oxidativo , Talasemia beta/metabolismo , Animales , Células de la Médula Ósea/patología , Técnicas de Cocultivo , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Células del Estroma/metabolismo , Células del Estroma/patología , Talasemia beta/patología
5.
Hum Gene Ther Clin Dev ; 28(1): 17-27, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28319446

RESUMEN

GSK2696273 (autologous CD34+ cells transduced with retroviral vector that encodes for the human adenosine deaminase [ADA] enzyme) is a gamma-retroviral ex vivo gene therapy of bone marrow-derived CD34+ cells for the treatment of adenosine deaminase deficiency severe combined immunodeficiency (ADA-SCID). ADA-SCID is a severe monogenic disease characterized by immunologic and nonimmunologic symptoms. Bone-marrow transplant from a matched related donor is the treatment of choice, but it is available for only a small proportion of patients. Ex vivo gene therapy of patient bone-marrow CD34+ cells is an alternative treatment. In order to prepare for a marketing authorization application in the European Union, preclinical safety studies in mice were requested by the European Medicines Agency (EMA). A pilot study and a main biodistribution study were performed according to Good Laboratory Practice (GLP) at the San Raffaele Telethon Institute for Gene Therapy test facility. In the main study, human umbilical cord blood (UCB)-derived CD34+ cells were transduced with gamma-retroviral vector used in the production of GSK2696273. Groups of 10 male and 10 female NOD-SCID gamma (NSG) mice were injected intravenously with a single dose of transduced- or mock-transduced UCB CD34+ cells, and they were observed for 4 months. Engraftment and multilineage differentiation of blood cells was observed in the majority of animals in both groups. There was no significant difference in the level of chimerism between the two groups. In the gene therapy group, vector was detectable in lymphohemopoietic and nonlymphohemopoietic tissues, consistent with the presence of gene-modified human hematopoietic donor cells. Given the absence of relevant safety concerns in the data, the nonclinical studies and the clinical experience with GSK2696273 supported a successful application for market authorization in the European Union for the treatment of ADA-SCID patients, for whom no suitable human leukocyte antigen-matched related donor is available.


Asunto(s)
Adenosina Desaminasa/deficiencia , Agammaglobulinemia/terapia , Terapia Genética , Vectores Genéticos/uso terapéutico , Laboratorios/normas , Inmunodeficiencia Combinada Grave/terapia , Adenosina Desaminasa/genética , Agammaglobulinemia/genética , Animales , Evaluación Preclínica de Medicamentos , Femenino , Técnicas de Transferencia de Gen , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Inmunodeficiencia Combinada Grave/genética , Distribución Tisular
6.
Sci Rep ; 7: 40136, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28074903

RESUMEN

Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.


Asunto(s)
Adenosina Desaminasa/deficiencia , Adenosina/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Animales , Conducta , Conducta Animal , Humanos , Ratones , Enfermedades del Sistema Nervioso/patología
7.
Mol Ther ; 22(8): 1472-1483, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24869932

RESUMEN

Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development.


Asunto(s)
Terapia Genética/métodos , Enfermedad Granulomatosa Crónica/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/virología , Glicoproteínas de Membrana/metabolismo , MicroARNs/genética , NADPH Oxidasas/metabolismo , Animales , Antígenos CD34/metabolismo , Línea Celular , Células Cultivadas , Terapia Combinada , Modelos Animales de Enfermedad , Vectores Genéticos/uso terapéutico , Enfermedad Granulomatosa Crónica/patología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Ratones , Células Mieloides/metabolismo , NADPH Oxidasa 2
8.
Blood ; 119(6): 1428-39, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22184407

RESUMEN

Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.


Asunto(s)
5'-Nucleotidasa/inmunología , Adenosina/inmunología , Agammaglobulinemia/inmunología , Antígenos CD/inmunología , Apirasa/inmunología , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/uso terapéutico , Adolescente , Adulto , Agammaglobulinemia/genética , Agammaglobulinemia/terapia , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Autoanticuerpos/inmunología , Niño , Preescolar , Femenino , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Hipotiroidismo/enzimología , Hipotiroidismo/genética , Hipotiroidismo/inmunología , Inmunohistoquímica , Lactante , Masculino , Ratones , Ratones Noqueados , Polietilenglicoles/química , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Linfocitos T Reguladores/metabolismo
9.
Blood ; 114(15): 3216-26, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19633200

RESUMEN

Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling.


Asunto(s)
Adenosina Desaminasa , Huesos/metabolismo , Trasplante de Células Madre Hematopoyéticas , Osteoblastos/metabolismo , Osteogénesis , Osteoprotegerina/sangre , Ligando RANK/sangre , Inmunodeficiencia Combinada Grave/sangre , Inmunodeficiencia Combinada Grave/terapia , Animales , Huesos/patología , Femenino , Terapia Genética , Hematopoyesis , Células Madre Hematopoyéticas/enzimología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Osteoprotegerina/genética , Ligando RANK/genética , Inmunodeficiencia Combinada Grave/patología , Trasplante Homólogo
10.
Blood ; 108(9): 2979-88, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16835374

RESUMEN

Adenosine deaminase (ADA) deficiency is caused by a purine metabolic dysfunction, leading to severe combined immunodeficiency (SCID) and multiple organ damage. To investigate the efficacy of ex vivo gene therapy with self-inactivating lentiviral vectors (LVs) in correcting this complex phenotype, we used an ADA(-/-) mouse model characterized by early postnatal lethality. LV-mediated ADA gene transfer into bone marrow cells combined with low-dose irradiation rescued mice from lethality and restored their growth, as did transplantation of wild-type bone marrow. Mixed chimerism with multilineage engraftment of transduced cells was detected in the long term in animals that underwent transplantation. ADA activity was normalized in lymphocytes and partially corrected in red blood cells (RBCs), resulting in full metabolic detoxification and prevention of severe pulmonary insufficiency. Moreover, gene therapy restored normal lymphoid differentiation and immune functions, including antigen-specific antibody production. Similar degrees of detoxification and immune reconstitution were obtained in mice treated early after birth or after 1 month of enzyme-replacement therapy, mimicking 2 potential applications for ADA-SCID. Overall, this study demonstrates the efficacy of LV gene transfer in correcting both the immunological and metabolic phenotypes of ADA-SCID and supports the future clinical use of this approach.


Asunto(s)
Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Trasplante de Médula Ósea/inmunología , Lentivirus/genética , Adenosina Desaminasa/metabolismo , Animales , Formación de Anticuerpos , Linfocitos B/inmunología , Citometría de Flujo , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Recuento de Linfocitos , Ratones , Ratones Noqueados , Ratones Transgénicos , Bazo/inmunología
11.
Hum Gene Ther ; 17(3): 303-13, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16544979

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a life-threatening X-linked primary immunodeficiency characterized by infections, hemorrhages, autoimmune disorders, and lymphomas. Transplantation of genetically corrected autologous hematopoietic stem cells (HSCs) could represent an alternative treatment to allogeneic HSC transplantation, the latter being often associated with severe complications. We used WAS-/- mice to test the efficacy of a gene therapy approach based on nonlethal irradiation followed by transplantation of WAS-/- HSCs transduced with lentiviral vectors encoding the WAS protein (WASP) from either the ubiquitous PGK promoter or the tissue- specific WAS promoter. The procedure resulted in significant levels of engraftment of WASP-expressing T cells, B cells, platelets, and myeloid cells. T cells harbored one or two vector copies and displayed partial to full correction of T cell receptor-driven interleukin-2 production and proliferation. In addition, polymerization of F-actin and localization of WASP at the site of the immunological synapse were restored. The treatment was well tolerated and no pathology was detected by systematic blood analysis and autopsy. The efficacy of WAS gene transfer into HSCs, using the WAS promoter-containing lentiviral vector, combined with nonlethal irradiation provides a strong rationale for the development of gene therapy for WAS patients.


Asunto(s)
ADN Complementario/genética , Terapia Genética , Lentivirus/genética , Regiones Promotoras Genéticas/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Actinas/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Western Blotting , Proliferación Celular , Técnica del Anticuerpo Fluorescente Indirecta , Vectores Genéticos/genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Interleucina-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transducción Genética , Trasplante Autólogo , Síndrome de Wiskott-Aldrich/genética
12.
Mol Ther ; 10(6): 1096-108, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15564141

RESUMEN

To improve maintenance and gene transfer of human lymphoid progenitors for clinical use in gene therapy of adenosine deaminase (ADA)-deficient SCID we investigated several gene transfer protocols using various stem cell-enriched sources. The lymphoid differentiation potential was measured by an in vitro clonal assay for B/NK cells and in the in vivo SCID-hu mouse model. Ex vivo culture with the cytokines TPO, FLT3-ligand, and SCF (T/F/S) plus IL-3 or IL-7 substantially increased the yield of transduced bone marrow (BM) CD34(+) cells purified from ADA-SCID patients or healthy donors, compared to T/F/S alone. Moreover, the use of IL-3 or IL-7 significantly improved the maintenance of in vitro B cell progenitors from ADA-SCID BM cells and allowed the efficient transduction of B and NK cell progenitors. Under these optimized conditions transduced CD34(+) cells were efficiently engrafted into SCID-hu mice and gave rise to B and T cell progeny, demonstrating the maintenance of in vivo lymphoid reconstitution capacity. The protocol based on the T/F/S + IL-3 combination was included in a gene therapy clinical trial for ADA-SCID, resulting in long-term engraftment of stem/progenitor cells. Remarkably, gene-corrected BM CD34(+) cells obtained from one patient 4 and 11 months after gene therapy were capable of repopulating the lymphoid compartment of SCID-hu hosts.


Asunto(s)
Adenosina Desaminasa/metabolismo , Antígenos CD34/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Técnicas de Transferencia de Gen , Interleucina-3/farmacología , Interleucina-7/farmacología , Linfocitos/efectos de los fármacos , Inmunodeficiencia Combinada Grave/patología , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Sangre Fetal/efectos de los fármacos , Sangre Fetal/metabolismo , Terapia Genética , Humanos , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Ratones SCID , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo , Inmunodeficiencia Combinada Grave/terapia , Trasplante de Células Madre , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA