Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
3.
Eur Respir J ; 63(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097206

RESUMEN

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudio de Asociación del Genoma Completo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Diabetes Mellitus Tipo 2/genética , Pulmón , Volumen Espiratorio Forzado/genética , Espirometría , Capacidad Vital
4.
Physiol Rep ; 11(15): e15793, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37568262

RESUMEN

AIMS: Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload. METHODS: We compared muscle mass and muscle fiber morphology between Stc2-/- (n = 21) and wild-type (n = 15) mice. We then quantified IGF1, IGF2, IGF binding proteins -4 and -5 (IGFBP-4, IGFBP-5), PAPP-A and STC2 in plantaris muscles of wild-type mice subjected to 4-week unilateral overload (n = 14). RESULTS: Stc2-/- mice showed up to 10% larger muscle mass compared with wild-type mice. This increase was mediated by greater cross-sectional area of muscle fibers. Overload increased plantaris mass and components of the IGF axis, including quantities of IGF1 (by 2.41-fold, p = 0.0117), IGF2 (1.70-fold, p = 0.0461), IGFBP-4 (1.48-fold, p = 0.0268), PAPP-A (1.30-fold, p = 0.0154) and STC2 (1.28-fold, p = 0.019). CONCLUSION: Here we provide evidence that STC2 is an inhibitor of muscle growth upregulated, along with other components of the IGF axis, during overload-induced muscle hypertrophy.


Asunto(s)
Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina , Hormonas Peptídicas , Animales , Ratones , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipertrofia , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/metabolismo , Hormonas Peptídicas/metabolismo , Proteína Plasmática A Asociada al Embarazo/genética
5.
Respir Res ; 24(1): 124, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143066

RESUMEN

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Asunto(s)
Infecciones por VIH , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Disbiosis/genética , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Perfilación de la Expresión Génica , Epitelio , Infecciones por VIH/epidemiología , Infecciones por VIH/genética
6.
Biomedicines ; 11(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36672643

RESUMEN

Epigenetic modifications are common in chronic obstructive pulmonary disease (COPD); however, their clinical relevance is largely unknown. We hypothesized that epigenetic disruptions are associated with symptoms and health status in COPD. We profiled the blood (n = 57) and airways (n = 62) of COPD patients for DNA methylation (n = 55 paired). The patients' health status was assessed using the St. George's Respiratory Questionnaire (SGRQ). We conducted differential methylation analyses and identified pathways characterized by epigenetic disruptions associated with SGRQ scores and its individual domains. 29,211 and 5044 differentially methylated positions (DMPs) were associated with total SGRQ scores in blood and airway samples, respectively. The activity, impact, and symptom domains were associated with 9161, 25,689 and 17,293 DMPs in blood, respectively; and 4674, 3730 and 5063 DMPs in airways, respectively. There was a substantial overlap of DMPs between airway and blood. DMPs were enriched for pathways related to common co-morbidities of COPD (e.g., ageing, cancer and neurological) in both tissues. Health status in COPD is associated with airway and systemic epigenetic changes especially in pathways related to co-morbidities of COPD. There are more blood DMPs than in the airways suggesting that blood epigenome is a promising source to discover biomarkers for clinical outcomes in COPD.

7.
Biomedicines ; 10(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551848

RESUMEN

One key feature of Chronic Obstructive Pulmonary Disease (COPD) is that its prevalence increases exponentially with age. DNA methylation clocks have become powerful biomarkers to detect accelerated aging in a variety of diseases and can help prognose outcomes in severe COPD. This study investigated which DNA methylation clock could best reflect airway epigenetic age when used in more accessible blood samples. Our analyses showed that out of six DNA methylation clocks investigated, DNAmGrimAge demonstrated the strongest correlation and the smallest difference between the airway epithelium and blood. Our findings suggests that blood DNAmGrimAge accurately reflects airway epigenetic age of individuals and that its elevation is highly associated with COPD.

8.
EBioMedicine ; 83: 104206, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35944348

RESUMEN

BACKGROUND: Age-related comorbidities such as chronic obstructive pulmonary disease (COPD) are common in people living with human immunodeficiency virus (PLWH). We investigated the relationship between COPD and the epigenetic age of the airway epithelium and peripheral blood of PLWH. METHODS: Airway epithelial brushings from 34 PLWH enrolled in the St. Paul's Hospital HIV Bronchoscopy cohort and peripheral blood from 378 PLWH enrolled in The Strategic Timing of Antiretroviral Treatment (START) study were profiled for DNA methylation. The DNA methylation biomarker of age and healthspan, GrimAge, was calculated in both tissue compartments. We tested the association of GrimAge with COPD in the airway epithelium and airflow obstruction as defined by an FEV1/FVC<0.70, and FEV1 decline over 6 years in blood. FINDINGS: The airway epithelium of PLWH with COPD was associated with greater GrimAge residuals compared to PLWH without COPD (Beta=3.18, 95%CI=1.06-5.31, P=0.005). In blood, FEV1/FVC

Asunto(s)
Infecciones por VIH , Enfermedad Pulmonar Obstructiva Crónica , Envejecimiento/genética , Biomarcadores , Colombia Británica , Estudios de Cohortes , Epigénesis Genética , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/genética
9.
Biomedicines ; 10(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740433

RESUMEN

The associations between airway eosinophilia, measured in sputum or peripheral blood, and acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are inconsistent. We therefore aimed to determine the association between eosinophilia in bronchoalveolar lavage (BAL) fluid and AECOPD in a clinical cohort. We analyzed differential cell counts from baseline BAL fluid in participants in the DISARM clinical trial (Clinicaltrials.gov #NCT02833480) and classified participants by the presence or absence of BAL eosinophilia (>1% of total leukocytes). We determined the association between BAL eosinophilia and AECOPD over 1 year of follow-up using negative binomial regression and Cox proportional hazards test. N = 63 participants were randomized, and N = 57 had BAL differential cell counts available. Participants with BAL eosinophilia (N = 21) had a significantly increased rate of acute exacerbations (unadjusted incidence rate ratio (IRR) 2.0, p = 0.048; adjusted IRR 2.24, p = 0.04) and a trend toward greater probability of acute exacerbation (unadjusted hazard ratio (HR) 1.74, p = 0.13; adjusted HR 2.3, p = 0.1) in the year of follow-up compared to participants without BAL eosinophilia (N = 36). These associations were not observed for BAL neutrophilia (N = 41 participants), BAL lymphocytosis (N = 27 participants) or peripheral blood eosinophilia at various threshold definitions (2%, N = 37; 3%, N = 27; 4%, N = 16). BAL may therefore be a sensitive marker of eosinophilic inflammation in the distal lung and may be of benefit for risk stratification or biomarker-guided therapy in COPD.

10.
Biomedicines ; 10(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35625847

RESUMEN

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) are commonly treated with inhaled corticosteroid/long-acting ß2-agonist combination therapy. While previous studies have investigated the host-microbiome interactions in COPD, the effects of specific steroid formulations on this complex cross-talk remain obscure. METHODS: We collected and evaluated data from the Study to Investigate the Differential Effects of Inhaled Symbicort and Advair on Lung Microbiota (DISARM), a randomized controlled trial. Bronchoscopy was performed on COPD patients before and after treatment with salmeterol/fluticasone, formoterol/budesonide or formoterol-only. Bronchial brush samples were processed for microbial 16S rRNA gene sequencing and host mRNA sequencing. Longitudinal changes in the microbiome at a community, phylum and genus level were correlated with changes in host gene expression using a Spearman's rank correlation test. FINDINGS: In COPD patients treated with salmeterol/fluticasone, the expression levels of 676 host genes were significantly correlated to changes in the alpha diversity of the small airways. At a genus level, the expression levels of 122 host genes were significantly related to changes in the relative abundance of Haemophilus. Gene enrichment analyses revealed the enrichment of pathways and biological processes related to innate and adaptive immunity and inflammation. None of these changes were evident in patients treated with formoterol/budesonide or formoterol alone. INTERPRETATION: Changes in the microbiome following salmeterol/fluticasone treatment are related to alterations in the host transcriptome in the small airways of patients with COPD. These data may provide insights into why some COPD patients treated with inhaled corticosteroids may be at an increased risk for airway infection, including pneumonia. FUNDING: The Canadian Institute of Health Research, the British Columbia Lung Association, and an investigator-initiated grant from AstraZeneca.

11.
Am J Respir Crit Care Med ; 206(2): 150-160, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35426765

RESUMEN

Rationale: Age-related diseases like chronic obstructive pulmonary disease (COPD) occur at higher rates in people living with human immunodeficiency virus (PLWH) than in uninfected populations. Objectives: To identify whether accelerated aging can be observed in the airways of PLWH with COPD, manifest by a unique DNA methylation signature. Methods: Bronchial epithelial brushings from PLWH with and without COPD and HIV-uninfected adults with and without COPD (N = 76) were profiled for DNA methylation and gene expression. We evaluated global Alu and LINE-1 methylation and calculated the epigenetic age using the Horvath clock and the methylation telomere length estimator. To identify genome-wide differential DNA methylation and gene expression associated with HIV and COPD, robust linear models were used followed by an expression quantitative trait methylation (eQTM) analysis. Measurements and Main Results: Epigenetic age acceleration and shorter methylation estimates of telomere length were found in PLWH with COPD compared with PLWH without COPD and uninfected patients with and without COPD. Global hypomethylation was identified in PLWH. We identified 7,970 cytosine bases located next to a guanine base (CpG sites), 293 genes, and 9 expression quantitative trait methylation-gene pairs associated with the interaction between HIV and COPD. Actin binding LIM protein family member 3 (ABLIM3) was one of the novel candidate genes for HIV-associated COPD highlighted by our analysis. Conclusions: Methylation age acceleration is observed in the airway epithelium of PLWH with COPD, a process that may be responsible for the heightened risk of COPD in this population. Their distinct methylation profile, differing from that observed in patients with COPD alone, suggests a unique pathogenesis to HIV-associated COPD. The associations warrant further investigation to establish causality.


Asunto(s)
Infecciones por VIH , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Envejecimiento/genética , Metilación de ADN/genética , Epigenómica , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Humanos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética
12.
Chest ; 161(5): 1155-1166, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104449

RESUMEN

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Asma/diagnóstico , Estudio de Asociación del Genoma Completo , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Fumar/genética
13.
Respir Res ; 22(1): 316, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937547

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an age-related condition that has been associated with early telomere attrition; the clinical implications of telomere shortening in COPD are not well known. In this study we aimed to determine the relationship of the epigenetic regulation of telomeric length in peripheral blood with the risk of exacerbations and hospitalization in patients with COPD. METHODS: Blood DNA methylation profiles were obtained from 292 patients with COPD enrolled in the placebo arm of the Macrolide Azithromycin to Prevent Rapid Worsening of Symptoms Associated with Chronic Obstructive Pulmonary Disease (MACRO) Study and who were followed for 1-year. We calculated telomere length based on DNA methylation markers (DNAmTL) and related this biomarker to the risk of exacerbation and hospitalization and health status (St. George Respiratory Questionnaire [SGRQ]) score over time using a Cox proportional hazards model. We also used linear models to investigate the associations of DNAmTL with the rates of exacerbation and hospitalization (adjusted for chronological age, lung function, race, sex, smoking, body mass index and cell composition). RESULTS: Participants with short DNAmTL demonstrated increased risk of exacerbation (P = 0.02) and hospitalization (P = 0.03) compared to those with longer DNAmTL. DNAmTL age acceleration was associated with higher rates of exacerbation (P = 1.35 × 10-04) and hospitalization (P = 5.21 × 10-03) and poor health status (lower SGRQ scores) independent of chronological age (P = 0.03). CONCLUSION: Telomeric age based on blood DNA methylation is associated with COPD exacerbation and hospitalization and thus a promising biomarker for poor outcomes in COPD.


Asunto(s)
Azitromicina/uso terapéutico , Hospitalización/tendencias , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Telómero/fisiología , Adulto , Anciano , Antibacterianos/uso terapéutico , Biomarcadores/metabolismo , Metilación de ADN , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Calidad de Vida , Estudios Retrospectivos , Encuestas y Cuestionarios , Factores de Tiempo , Estados Unidos/epidemiología
17.
Hum Genet ; 140(6): 969-979, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33604698

RESUMEN

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes were in suggestive loci (PGWAS < 5 × 10-05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously associated with a heightened risk of COVID-19 (PGWAS < 5 × 10-08). We identified a causal association between OAS1 and COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.


Asunto(s)
Proteínas Sanguíneas/metabolismo , COVID-19/epidemiología , Predisposición Genética a la Enfermedad , Pulmón/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , SARS-CoV-2/aislamiento & purificación , Sistema del Grupo Sanguíneo ABO/metabolismo , COVID-19/metabolismo , COVID-19/virología , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Factores de Riesgo
18.
Thorax ; 76(5): 448-455, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443234

RESUMEN

INTRODUCTION: People living with HIV (PLWH) suffer from age-related comorbidities such as COPD. The processes responsible for reduced lung function in PLWH are largely unknown. We performed an epigenome-wide association study to investigate whether blood DNA methylation is associated with impaired lung function in PLWH. METHODS: Using blood DNA methylation profiles from 161 PLWH, we tested the effect of methylation on FEV1, FEV1/FVC ratio and FEV1 decline over a median of 5 years. We evaluated the global methylation of PLWH with airflow obstruction by testing the differential methylation of transposable elements Alu and LINE-1, a well-described marker of epigenetic ageing. RESULTS: Airflow obstruction as defined by a FEV1/FVC<0.70 was associated with 1393 differentially methylated positions (DMPs), while 4676 were associated with airflow obstruction based on the FEV1/FVC

Asunto(s)
Metilación de ADN , Infecciones por VIH/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Adulto , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/virología , Pruebas de Función Respiratoria
19.
Sci Rep ; 10(1): 21863, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318519

RESUMEN

Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and TMPRSS2, and to further explore their biological functions and potential as druggable targets. Using the gene expression profiles of 1,038 lung tissue samples, we performed a weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We explored the biology of co-expressed genes using bioinformatics databases, and identified known drug-gene interactions. ACE2 was in a module of 681 co-expressed genes; 10 genes with moderate-high correlation with ACE2 (r > 0.3, FDR < 0.05) had known interactions with existing drug compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 31 of these genes were enriched in the gene ontology biologic process 'receptor-mediated endocytosis', and 52 TMPRSS2-correlated genes had known interactions with drug compounds. Dozens of genes are co-expressed with ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of the co-expressed genes are potentially targetable with existing drugs, which may accelerate the development of COVID-19 therapeutics.


Asunto(s)
COVID-19/metabolismo , Pulmón/metabolismo , Receptores de Coronavirus/metabolismo , Transcriptoma , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , Estudios de Cohortes , Bases de Datos de Compuestos Químicos , Femenino , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Serina Endopeptidasas/metabolismo
20.
Thorax ; 75(11): 934-943, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839289

RESUMEN

BACKGROUND: The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS: We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS: We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION: We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Enfermedad Pulmonar Obstructiva Crónica/genética , Uteroglobina/sangre , Adulto , Progresión de la Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/sangre , Pruebas de Función Respiratoria , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...