Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791117

RESUMEN

Antimicrobial resistance (AMR) is one of the biggest threats in modern times. It was estimated that in 2019, 1.27 million deaths occurred around the globe due to AMR. Methicillin-resistant Staphylococcus aureus (MRSA) strains, a pathogen considered of high priority by the World Health Organization, have proven to be resistant to most of the actual antimicrobial treatments. Therefore, new treatments are required to be able to manage this increasing threat. Under this perspective, an important metabolic pathway for MRSA survival, and absent in mammals, is the shikimate pathway, which is involved in the biosynthesis of chorismate, an intermediate for the synthesis of aromatic amino acids, folates, and ubiquinone. Therefore, the enzymes of this route have been considered good targets to design novel antibiotics. The fifth step of the route is performed by shikimate kinase (SK). In this study, an in-house chemical library of 170 benzimidazole derivatives was screened against MRSA shikimate kinase (SaSK). This effort led to the identification of the first SaSK inhibitors, and the two inhibitors with the greatest inhibition activity (C1 and C2) were characterized. Kinetic studies showed that both compounds were competitive inhibitors with respect to ATP and non-competitive for shikimate. Structural analysis through molecular docking and molecular dynamics simulations indicated that both inhibitors interacted with ARG113, an important residue involved in ATP binding, and formed stable complexes during the simulation period. Biological activity evaluation showed that both compounds were able to inhibit the growth of a MRSA strain. Mitochondrial assays showed that both compounds modify the activity of electron transport chain complexes. Finally, ADMETox predictions suggested that, in general, C1 and C2 can be considered as potential drug candidates. Therefore, the benzimidazole derivatives reported here are the first SaSK inhibitors, representing a promising scaffold and a guide to design new drugs against MRSA.


Asunto(s)
Bencimidazoles , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol) , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Bencimidazoles/farmacología , Bencimidazoles/química , Cinética , Antibacterianos/farmacología , Antibacterianos/química , Simulación de Dinámica Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
Vet Parasitol ; 327: 110113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232512

RESUMEN

In this study, we present the preparation, stability, and in vivo fasciolicidal activity of three new intramuscular formulations in sheep of a prodrug based on triclabendazole, named fosfatriclaben. The new formulations were ready-to-use aqueous solutions with volumes recommended for intramuscular administration in sheep. The use of poloxamers (P-407 and P-188) and polysorbates (PS-20 and PS-80) in the new formulations improved the aqueous solubility of fosfatriclaben by 8-fold at pH 7.4. High-performance liquid chromatography with UV detection was used to evaluate the stability of fosfatriclaben in the three formulations. High recovery (> 90%) of fosfatriclaben was found for all formulations after exposure at 57 ± 2 °C for 50 h. The three intramuscular formulations showed high fasciolicidal activity at a dose of 6 mg/kg, which was equivalent to the triclabendazole content. The fasciolicidal activity of fosfatriclaben was similar to commercial oral (Fasimec®) and intramuscular (Endovet®) triclabendazole formulations at a dose of 12 mg/kg. In the in vivo experiments, all formulations administered intramuscularly reduced egg excretion by 100%, and formulations F1, F2, and F3 presented fasciolicidal activities of 100%, 100%, and 99.6%, respectively.


Asunto(s)
Antihelmínticos , Fasciola hepatica , Fascioliasis , Profármacos , Enfermedades de las Ovejas , Animales , Ovinos , Triclabendazol , Fascioliasis/veterinaria , Antihelmínticos/uso terapéutico , Profármacos/química , Bencimidazoles/uso terapéutico , Enfermedades de las Ovejas/tratamiento farmacológico , Agua/química
3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203832

RESUMEN

Chemotherapy currently available for leishmaniasis treatment has many adverse side effects and drug resistance. Therefore, the identification of new targets and the development of new drugs are urgently needed. Previously, we reported the synthesis of a N-(2-methoxyphenyl)-1-methyl-1H-benzimidazol-2-amine, named compound 8, with an IC50 value in the micromolar range against L. mexicana, it also inhibited 68.27% the activity of recombinant L. mexicana arginase. Herein, we report studies carried out to characterize the mechanism of action of compound 8, as well as its in vivo leishmanicidal activity. It was shown in our ultrastructural studies that compound 8 induces several changes, such as membrane blebbing, the presence of autophagosomes, membrane detachment and mitochondrial and kinetoplast disorganization, among others. Compound 8 triggers the production of ROS and parasite apoptosis. It reduced 71% of the parasite load of L. mexicana in an experimental model of cutaneous leishmaniasis in comparison with a control. Altogether, the data obtained suggest the potential use of compound 8 in the treatment of cutaneous leishmaniasis.


Asunto(s)
Leishmania mexicana , Leishmaniasis Cutánea , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Apoptosis , Arginasa , Bencimidazoles/farmacología , Aminas
4.
J Chem Inf Model ; 63(22): 7228-7238, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947759

RESUMEN

Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/ß-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound 5a, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC50 < 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that 5a has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity.


Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Estructura Molecular , Relación Estructura-Actividad , Nocodazol/farmacología , Tubulina (Proteína)/metabolismo , Proliferación Celular , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Polimerizacion , Ensayos de Selección de Medicamentos Antitumorales
5.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003236

RESUMEN

Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Humanos , Simulación del Acoplamiento Molecular , Leishmania/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Leishmaniasis/parasitología , Antiprotozoarios/uso terapéutico
6.
Front Pharmacol ; 14: 1193282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426813

RESUMEN

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 µM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 µM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 µM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.

7.
AAPS PharmSciTech ; 24(6): 158, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498473

RESUMEN

Albendazole is a broad-spectrum anthelmintic drug used for parasitic infections. In addition, due to its mechanism of action, it has been studied as an anticancer agent. However, poor and highly variable bioavailability are limiting factors for its use in systemic illnesses. The present study aimed to develop two parenteral formulations of albendazole and to compare its pharmacokinetic profile with the conventional oral administration. Parenteral formulations were developed using two different approaches: a phosphonooxymethylated prodrug and cosolvents. For the albendazole prodrug, once synthetized, its solubility and hydrolysis with alkaline phosphatase were evaluated. A factorial design of experiments was used for the cosolvent formulation. Stability and hemolytic activity were assessed. A pharmacokinetic study was performed on New Zealand rabbits. Both formulations were administered intravenously, and the prodrug was also administered intramuscularly. Results were compared with those obtained after the oral administration of albendazole. A 20,000-fold and 6000-fold increase in albendazole solubility was found with the prodrug and cosolvent formulations, respectively. Both parenteral formulations displayed higher albendazole plasma concentrations for the first 2 h compared with oral administration, even when the oral dose was doubled. The absolute bioavailability of oral albendazole was 15.5% while for the intramuscular administration of the prodrug was 102.6%. Both parenteral formulations showed a significant decrease in the formation of albendazole sulfoxide (ANOVA p<0.05) and allowed greater exposure to albendazole. Albendazole cosolvent parenteral formulation could be a promising option in systemic illnesses considering its ease of preparation and superb pharmacokinetic performance.


Asunto(s)
Antihelmínticos , Antineoplásicos , Profármacos , Animales , Conejos , Albendazol , Profármacos/farmacocinética , Disponibilidad Biológica , Administración Oral
8.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890163

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates phosphotyrosine residues and is an important regulator of several signaling pathways, such as insulin, leptin, and the ErbB signaling network, among others. Therefore, this enzyme is considered an attractive target to design new drugs against type 2 diabetes, obesity, and cancer. To date, a wide variety of PTP1B inhibitors that have been developed by experimental and computational approaches. In this review, we summarize the achievements with respect to PTP1B inhibitors discovered by applying computer-assisted drug design methodologies (virtual screening, molecular docking, pharmacophore modeling, and quantitative structure-activity relationships (QSAR)) as the principal strategy, in cooperation with experimental approaches, covering articles published from the beginning of the century until the time this review was submitted, with a focus on studies conducted with the aim of discovering new drugs against type 2 diabetes. This review encourages the use of computational techniques and includes helpful information that increases the knowledge generated to date about PTP1B inhibition, with a positive impact on the route toward obtaining a new drug against type 2 diabetes with PTP1B as a molecular target.

9.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35337081

RESUMEN

We report synthesis, characterization, biological evaluation, and molecular-docking studies of 18 thieno[2,3-b]pyridines with a phenylacetamide moiety at position 2, which is disubstituted with F, Cl, Br, or I at position 4, and with electron-withdrawing and electron-donating groups (-CN, -NO2, -CF3, and -CH3) at position 2, to study how the electronic properties of the substituents affected the FOXM1-inhibitory activity. Among compounds 1-18, only those bearing a -CN (regardless of the halogen) decreased FOXM1 expression in a triple-negative breast cancer cell line (MDA-MB-231), as shown by Western blotting. However, only compounds 6 and 16 decreased the relative expression of FOXM1 to a level lower than 50%, and hence, we determined their anti-proliferative activity (IC50) in MDA-MB-231 cells using the MTT assay, which was comparable to that observed with FDI-6, in contrast to compound 1, which was inactive according to both Western blot and MTT assays. We employed molecular docking to calculate the binding interactions of compounds 1-18 in the FOXM1 DNA-binding site. The results suggest a key role for residues Val296 and Leu289 in this binding. Furthermore, we used molecular electrostatic potential maps showing the effects of different substituents on the overall electron density.

10.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948408

RESUMEN

Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 µM and 82 µM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.


Asunto(s)
Antiprotozoarios/farmacología , Arginasa/antagonistas & inhibidores , Bencimidazoles/farmacología , Leishmania mexicana/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/química , Arginasa/metabolismo , Bencimidazoles/química , Línea Celular , Descubrimiento de Drogas , Humanos , Leishmania mexicana/enzimología , Leishmania mexicana/fisiología , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Modelos Moleculares , Proteínas Protozoarias/metabolismo
11.
Bioorg Med Chem ; 48: 116418, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34563877

RESUMEN

Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling pathway and has been validated as a therapeutic target for type 2 diabetes. A wide variety of scaffolds have been included in the structure of PTP1B inhibitors, one of them is the benzimidazole nucleus. Here, we report the design and synthesis of a new series of di- and tri- substituted benzimidazole derivatives including their kinetic and structural characterization as PTP1B inhibitors and hypoglycemic activity. Results show that compounds 43, 44, 45, and 46 are complete mixed type inhibitors with a Ki of 12.6 µM for the most potent (46). SAR type analysis indicates that a chloro substituent at position 6(5), a ß-naphthyloxy at position 5(6), and a p-benzoic acid attached to the linker 2-thioacetamido at position 2 of the benzimidazole nucleus, was the best combination for PTP1B inhibition and hypoglycemic activity. In addition, molecular dynamics studies suggest that these compounds could be potential selective inhibitors from other PTPs such as its closest homologous TCPTP, SHP-1, SHP-2 and CDC25B. Therefore, the compounds reported here are good hits that provide structural, kinetic, and biological information that can be used to develop novel and selective PTP1B inhibitors based on benzimidazole scaffold.


Asunto(s)
Bencimidazoles/farmacología , Glucemia/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hipoglucemiantes/farmacología , Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Animales , Bencimidazoles/síntesis química , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Estructura Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Ratas , Ratas Wistar , Relación Estructura-Actividad
12.
Vet Parasitol ; 298: 109524, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34271317

RESUMEN

In this work, we present an evaluation of the fasciolicidal efficacy of a new injectable formulation of fosfatriclaben in comparison with the subcutaneous closantel and oral triclabendazole formulations currently used in veterinary practice as fasciolicides. The study was carried out in vivo on Fasciola hepatica at 2, 4, 6 and 8 weeks of age in experimentally infected sheep. To evaluate the formulation, the percent reduction of the parasite load was measured and the number of fluke eggs. Fosfatriclaben was used at 6 mg/kg/IM (dose equivalent to triclabendazole content), closantel at 5% at 10 mg/kg/SC, and triclabendazole at 10 mg/kg/PO; the control group received no treatment. Fosfatriclaben showed fasciolicidal efficacies of 95.5 %, 100 %, 100 % and 100 %, and triclabendazole showed similar efficacies of 97.4 %, 100 %, 100 % and 100 %, at the different treatment weeks (P > 0.05). Closantel showed limited efficacy against 2-, 4- and 6-week-old flukes but 100 % efficacy in adult flukes. All three evaluated formulations eliminated all 8-week-old F. hepatica trematode eggs. Although fosfatriclaben and triclabendazole showed similar fasciolicidal efficacy, the intramuscular administration of fosfatriclaben has several advantages over the oral administration of triclabendazole, such as ease of administration for veterinary use and a reduced risk of accidents for both the operator and the animals. In addition, the dose used in this injectable formulation is only 60 % of the oral dose, which reduces environmental contamination.


Asunto(s)
Antihelmínticos , Fasciola hepatica , Fascioliasis , Profármacos , Enfermedades de las Ovejas , Animales , Antihelmínticos/administración & dosificación , Fascioliasis/tratamiento farmacológico , Fascioliasis/veterinaria , Profármacos/administración & dosificación , Ovinos , Enfermedades de las Ovejas/tratamiento farmacológico , Resultado del Tratamiento
13.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668364

RESUMEN

Candidiasis, caused by yeasts of the genus Candida, is the second cause of superficial and mucosal infections and the fourth cause of bloodstream infections. Although some antifungal drugs to treat candidiasis are available, resistant strains to current therapies are emerging. Therefore, the search for new candicidal compounds is certainly a priority. In this regard, a series of indazole and pyrazole derivatives were designed in this work, employing bioisosteric replacement, homologation, and molecular simplification as new anticandidal agents. Compounds were synthesized and evaluated against C. albicans, C. glabrata, and C. tropicalis strains. The series of 3-phenyl-1H-indazole moiety (10a-i) demonstrated to have the best broad anticandidal activity. Particularly, compound 10g, with N,N-diethylcarboxamide substituent, was the most active against C. albicans and both miconazole susceptible and resistant C. glabrata species. Therefore, the 3-phenyl-1H-indazole scaffold represents an opportunity for the development of new anticandidal agents with a new chemotype.

14.
Parasitol Res ; 119(8): 2687-2693, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32514648

RESUMEN

In this work, we compare and evaluate the efficiency of fosfatriclaben with three commercial fasciolicides in experimentally infected sheep. Fosfatriclaben is a novel prodrug derived from triclabendazole; it is highly water-soluble with excellent aqueous stability at pH 7, properties that make it ideal for developing intramuscular pharmaceutical compositions in the form of solutions. In order to compare, 30 mixed breed sheep, previously diagnosed negative to fluke eggs, were infected with 200 metacercariae of Fasciola hepatica, twice. Five groups of six animals/each were formed for treatments. Group 1 (G1) was treated with closantel 5% injectable at 5 mg/kg subcutaneously, G2 with clorsulon at 2 mg/kg subcutaneously, G3 with triclabendazole at 12 mg/kg per os, G4 with fosfatriclaben at 6 mg/kg intramuscularly (dose equivalent to triclabendazole content), and G5 remained as the non-treated control. On day 110, fecal samples were examined to determine the percentage of egg reduction after treatment, and sheep were humanely euthanized. The livers were collected, the flukes were extracted, measured, and counted. Efficiency in egg reduction was of 86.8, 90.5, 98.4, and 97.3% for closantel, clorsulon, triclabendazole, and fosfatriclaben, respectively, and efficiency against flukes was of 96.2, 91.9, 99.4, and 95.7%, respectively. No statistical differences were found between treatments. It is concluded that fosfatriclaben at 6 mg/kg intramuscularly presented a high fasciolicide efficiency, similar to the best commercial fasciolicides, having advantage over its predecessor since it uses half of the dose required by triclabendazole to remove flukes in sheep under study.


Asunto(s)
Antihelmínticos/uso terapéutico , Fasciola hepatica/efectos de los fármacos , Fascioliasis/veterinaria , Enfermedades de las Ovejas/tratamiento farmacológico , Animales , Fascioliasis/tratamiento farmacológico , Heces/parasitología , Recuento de Huevos de Parásitos , Ovinos , Resultado del Tratamiento
15.
Mem Inst Oswaldo Cruz ; 115: e190348, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32049098

RESUMEN

BACKGROUND: It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES: To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS: CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20: showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS: The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Asunto(s)
Albendazol/farmacología , Antiprotozoarios/farmacología , Proteínas del Citoesqueleto/efectos de los fármacos , Giardia lamblia/efectos de los fármacos , Tiazoles/farmacología , Albendazol/química , Animales , Antiprotozoarios/química , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Ratones , Nitrocompuestos , Pruebas de Sensibilidad Parasitaria , Tiazoles/química , Factores de Tiempo
16.
Acta Trop ; 202: 105254, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31689380

RESUMEN

The benzimidazole derivative, 6-chloro-5-(2,3-dichlorophenoxy)-2-(trifluoromethyl)-1H-benzimidazole (RCB15), has a similar mode of action and efficacy as albendazole, a commonly used anthelminthic drugs. The aim of this study was to evaluate its influence on the tricarboxylic acid cycle in Taenia crassiceps cysticerci. The parasites were cultured in supplemented RPMI medium containing albendazole sulfoxide (ABZSO) or RCB15, for 24 h. Then, frozen in liquid nitrogen for organic metabolites extraction. Samples were analyzed by high performance liquid chromatography and organic acids of the tricarboxylic acid cycle were detected. It was possible to observe changes in the concentrations of all acids involved in this metabolic pathway, with the exception of α-ketoglutarate, which was not detected in the control group neither in most of the treated groups. It indicates that the parasite presented a partial inhibition of the tricarboxylic acid cycle. The significant increase in the concentration of citrate, oxaloacetate and succinate in the RCB15 treated groups may indicate an activation of the fumarate reductase pathway, leading to metabolic distress. Therefore RCB15 may be considered an alternative for the treatment of tissue parasitic diseases, since it induced changes in the main metabolic pathway of the parasite.


Asunto(s)
Antihelmínticos/farmacología , Bencimidazoles/farmacología , Ciclo del Ácido Cítrico/efectos de los fármacos , Cysticercus/efectos de los fármacos , Taenia/efectos de los fármacos , Animales , Cysticercus/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Ratones Endogámicos BALB C , Taenia/metabolismo
17.
Mem. Inst. Oswaldo Cruz ; 115: e190348, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1056773

RESUMEN

BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Asunto(s)
Humanos , Animales , Ratones , Tiazoles/farmacología , Albendazol/farmacología , Giardia lamblia/efectos de los fármacos , Proteínas del Citoesqueleto/efectos de los fármacos , Antiprotozoarios/farmacología , Tiazoles/química , Factores de Tiempo , Albendazol/química , Técnica del Anticuerpo Fluorescente Indirecta , Pruebas de Sensibilidad Parasitaria , Antiprotozoarios/química
18.
Mem. Inst. Oswaldo Cruz ; 115: e190348, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1091246

RESUMEN

BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Asunto(s)
Humanos , Animales , Ratones , Tiazoles/farmacología , Albendazol/farmacología , Giardia lamblia/efectos de los fármacos , Proteínas del Citoesqueleto/efectos de los fármacos , Antiprotozoarios/farmacología , Tiazoles/química , Factores de Tiempo , Albendazol/química , Técnica del Anticuerpo Fluorescente Indirecta , Pruebas de Sensibilidad Parasitaria , Antiprotozoarios/química
19.
Molecules ; 24(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487860

RESUMEN

Leishmanicidal drugs have many side effects, and drug resistance to all of them has been documented. Therefore, the development of new drugs and the identification of novel therapeutic targets are urgently needed. Leishmania mexicana trypanothione reductase (LmTR), a NADPH-dependent flavoprotein oxidoreductase important to thiol metabolism, is essential for parasite viability. Its absence in the mammalian host makes this enzyme an attractive target for the development of new anti-Leishmania drugs. Herein, a tridimensional model of LmTR was constructed and the molecular docking of 20 molecules from a ZINC database was performed. Five compounds (ZINC04684558, ZINC09642432, ZINC12151998, ZINC14970552, and ZINC11841871) were selected (docking scores -10.27 kcal/mol to -5.29 kcal/mol and structurally different) and evaluated against recombinant LmTR (rLmTR) and L. mexicana promastigote. Additionally, molecular dynamics simulation of LmTR-selected compound complexes was achieved. The five selected compounds inhibited rLmTR activity in the range of 32.9% to 40.1%. The binding of selected compounds to LmTR involving different hydrogen bonds with distinct residues of the molecule monomers A and B is described. Compound ZINC12151998 (docking score -10.27 kcal/mol) inhibited 32.9% the enzyme activity (100 µM) and showed the highest leishmanicidal activity (IC50 = 58 µM) of all the selected compounds. It was more active than glucantime, and although its half-maximal cytotoxicity concentration (CC50 = 53 µM) was higher than that of the other four compounds, it was less cytotoxic than amphotericin B. Therefore, compound ZINC12151998 provides a promising starting point for a hit-to-lead process in our search for new anti-Leishmania drugs that are more potent and less cytotoxic.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/química , Tripanocidas/química , Tripanocidas/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Relación Dosis-Respuesta a Droga , Enlace de Hidrógeno , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Farmacocinética , Proteínas Recombinantes/química , Relación Estructura-Actividad
20.
J Biomol Struct Dyn ; 37(16): 4301-4311, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30477412

RESUMEN

Protein kinase B also known as AKT is a cardinal node in different signaling pathways that regulates diverse cell processes. AKT has three isoforms that share high homology. Hyperactivation of each isoform is related with different types of cancer. This work describes the computational search for new inhibitors using a hit optimization process of the previously reported AKT pan inhibitor, a 2,4,6-trisubstituted pyridine. A database of new molecules was proposed using a variant of fragment-based docking methodology and previous reported considerations. Molecular docking followed by molecular dynamics studies were performed to select the best compounds and analyze their behavior. Protein-ligand complexes energy was calculated using molecular mechanics Poisson-Boltzmann surface area protocol. Further, proposed molecules were compared with the ChEMBL database of compounds assayed against AKT. Data analysis leads to determine the structural requirements necessary for a favorable interaction of the proposed ligands with the AKT pocket. Molecular dynamics data suggested that the pKa of the ligands is important for the stability in the AKT pocket. Molecular similarity analysis shows that proposed ligands have not been previously reported. Thus, ligands with high docking scores and favorable behavior on molecular dynamics simulations are proposed as potential AKT inhibitors.


Asunto(s)
Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/química , Termodinámica , Sitios de Unión/efectos de los fármacos , Simulación por Computador , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/genética , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...