Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(11): 5396-5413, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-36971114

RESUMEN

The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.


Asunto(s)
Ataxina-3 , Cromatina , Replicación del ADN , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Cromatina/genética , Daño del ADN , Enfermedad de Machado-Joseph/genética , Proteínas Represoras/metabolismo
2.
Viruses ; 14(6)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35746653

RESUMEN

SARS-CoV-2 variants of concern (VOCs) have caused a significant increase in infections worldwide. Despite high vaccination rates in industrialized countries, the fourth VOC, Omicron, has outpaced the Delta variant and is causing breakthrough infections in individuals with two booster vaccinations. While the magnitude of morbidity and lethality is lower in Omicron, the infection rate and global spread are rapid. Using a specific IgG multipanel-ELISA with the spike protein's receptor-binding domain (RBD) from recombinant Alpha, Gamma, Delta, and Omicron variants, sera from health-care workers from the Medical University of Vienna were tested pre-pandemic and post-vaccination (BNT162b2; ChAdOx1 nCoV-19). The cohort was continuously monitored by SARS-CoV-2 testing and commercial nucleocapsid IgG ELISA. RBD IgG ELISA showed significantly lower reactivity against the Omicron-RBD compared to the Alpha variant in all individuals (p < 0.001). IgG levels were independent of sex, but were significantly higher in BNT162b2 recipients <45 years of age for Alpha, Gamma, and Delta (p < 0.001; p = 0.040; p = 0.004, respectively). Pre-pandemic cross-reactive anti-Omicron IgG was detected in 31 individuals and was increased 8.78-fold after vaccination, regardless of vaccine type. The low anti-RBD Omicron IgG level could explain the breakthrough infections and their presence could also contribute to a milder COVID-19 course by cross-reactivity and broadening the adaptive immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Prueba de COVID-19 , ChAdOx1 nCoV-19 , Humanos , Inmunoglobulina G , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
3.
Biochem Biophys Res Commun ; 543: 45-49, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33515911

RESUMEN

In order to control the COVID-19 pandemic caused by SARS-CoV-2 infection, serious progress has been made to identify infected patients and to detect patients with a positive immune response against the virus. Currently, attempts to generate a vaccine against the coronavirus are ongoing. To understand SARS-CoV-2 immunoreactivity, we compared the IgG antibody response against SARS-CoV-2 in infected versus control patients by dot blot using recombinant viral particle proteins: N (Nucleocapsid), M (Membrane) and S (Spike). In addition, we used different protein fragments of the N and S protein to map immune epitopes. Most of the COVID-19 patients presented a specific immune response against the full length and fragments of the N protein and, to lesser extent, against a fragment containing amino acids 300-685 of the S protein. In contrast, immunoreactivity against other S protein fragments or the M protein was low. This response is specific for COVID-19 patients as very few of the control patients displayed immunoreactivity, likely reflecting an immune response against other coronaviruses. Altogether, our results may help develop method(s) for measuring COVID-19 antibody response, selectivity of methods detecting such SARS-CoV-2 antibodies and vaccine development.


Asunto(s)
COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Proteínas M de Coronavirus/genética , Proteínas M de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Sueros Inmunes/inmunología , Inmunidad Humoral , Immunoblotting , Inmunoglobulina G/sangre , Fosfoproteínas/genética , Fosfoproteínas/inmunología , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Virión/inmunología
4.
EMBO J ; 38(21): e102361, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31613024

RESUMEN

The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ataxina-3/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Homeostasis , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/genética , Ataxina-3/genética , Supervivencia Celular , Cromatina/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Cells ; 7(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241373

RESUMEN

Eukaryotic cells divide by accomplishing a program of events in which the replication of the genome is a fundamental part. To ensure all cells have an accurate copy of the genome, DNA replication occurs only once per cell cycle and is controlled by numerous pathways. A key step in this process is the initiation of DNA replication in which certain regions of DNA are marked as competent to replicate. Moreover, initiation of DNA replication needs to be coordinated with other cell cycle processes. At the molecular level, initiation of DNA replication relies, among other mechanisms, upon post-translational modifications, including the conjugation and hydrolysis of ubiquitin. An example is the precise control of the levels of the DNA replication initiation protein Cdt1 and its inhibitor Geminin by ubiquitin-mediated proteasomal degradation. This control ensures that DNA replication occurs with the right timing during the cell cycle, thereby avoiding re-replication events. Here, we review the events that involve ubiquitin signalling during DNA replication initiation, and how they are linked to human disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...