Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121053

RESUMEN

Detection and quantification of diverse analytes such as molecules, cells receptor and even particles and nanoparticles, play an important role in biomedical research, particularly in electrochemical sensing platform technologies. In this study, gold nanoparticles (AuNPs) prepared by green synthesis from Sargassum sp. were characterized using ultraviolet-visible (UV-Vis) and Fourier transform-infrared (FT-IR) spectroscopies, X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) and zeta potential (ζ) obtaining organic capped face-centered cubic 80-100 nm AuNPs with an excellent stability in a wide range of pH. The AuNPs were used to modify a carbon nanotubes-screen printed electrode (CNT-SPE), through the drop-casting method, to assemble a novel portable electrochemical sensing platform for glucose, using a novel combination of components, which together have not been employed. The ability to sense and measure glucose was demonstrated, and its electrochemical fundamentals was studied using cyclic voltammetry (CV). The limits of detection (LOD) and quantification (LOQ) to glucose were 50 µM and 98 µM, respectively, and these were compared to those of other sensing platforms.


Asunto(s)
Electrodos , Nanopartículas del Metal , Nanotubos de Carbono , Sargassum/química , Oro , Tecnología Química Verde , Espectroscopía Infrarroja por Transformada de Fourier
2.
Polymers (Basel) ; 12(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283702

RESUMEN

In this study, new polyurethanes (PUs) were prepared by using inulin and polycaprolactone as polyols. Their structure and morphology were determined by Fourier transform infrared spectroscopy (FTIR), Raman dispersive spectroscopy, Nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and scanning electron microscopy (SEM), whereas their mechanical properties were evaluated by a universal testing machine. Additionally, their water uptake, swelling behavior, and degradation were evaluated to be used as drug delivery carriers. Therefore, an anti-cancer drug was loaded to these PUs with 25% of loading efficiency and its release behavior was studied using different theoretical models to unveil its mechanism. Finally, the ability of the new PUs to be used as a clip marker in breast biopsy was evaluated. The results clearly demonstrate that these PUs are safe and can be used as intelligent drug release matrices for targeted drug delivery and exhibits positive results to be used for clip marker and in general for breast cancer applications.

3.
Materials (Basel) ; 12(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581421

RESUMEN

The demand for hydrophobic polymer-based protective coatings to impart high corrosion resistance has increased recently. The increase of the hydrophobicity in a hybrid coating is a new challenge, for that reason and in order to protect a metallic surface of oxidant agents, a poly (methyl methacrylate) (PMMA) coating with the addition of a different amount of silicon dioxide (SiO2) was developed. The hybrid coating was applied on a sample of stainless steel AISI 304 by the dip-coating method. The characterization of the coatings was determined by electrochemical impedance spectroscopy and with a scanning electrochemical microscopy. The best coatings were PMMA and PMMA + SiO2 0.01% that exhibits a real impedance in the Nyquist diagram of 760 and 427,800 MΩ⋅cm2, respectively, and the modulus of the real impedance in the Bode diagram present values of 2.2 × 108 and 3.3 × 108 Ω⋅cm2. Moreover, the phase angle presents constant values around 75° to 85° and 85° for the PMMA and PMMA + SiO2 0.01%, respectively. Moreover, the values of the real resistance for the PMMA + SiO2 0.01% coating present values in the order of Mega-ohms despite the coating exhibits an artificial defect in their surface. The contact angle test showed that the hydrophobicity of the hybrid PMMA + SiO2 0.01% coating is higher than that of the pure PMMA coatings. The hybrid PMMA + SiO2 coatings developed in this work are a very interesting and promising area of study in order to develop efficient products to protect metallic surfaces from corrosion phenomenon.

4.
Mater Sci Eng C Mater Biol Appl ; 104: 109978, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31500000

RESUMEN

Eysenhardtia polystachya (EP) is an endemic Mexican plant that has been widely studied for its antidiabetic, antibacterial, and antioxidant properties. Several studies had reported the main components of EP, but their fluorescence properties had not been broadly studied. In a previous study we obtained extracts with different composition from this plant and they presented florescence. In this work we study fluorescent compounds from EP and evaluate their fluorescence properties. EP extracts were obtained by Soxhlet extraction with ethanol, samples were dried, and compounds were separated by column chromatography. Fluorescent fractions were classified apart from other fractions and characterized by Scanning electron microscopy (SEM), UV-Vis, Raman, FTIR and 1H NMR spectra. Additionally, we obtained functional nanomaterials (using silica nanoparticles). TD-DFT molecular calculations of the fluorescent components were carried out to compare their theoretical UV-Vis spectra to experimental results. Nine fractions were obtained by chromatography and five of them showed fluorescence. Fluorescence of extracts from Eysenhardtia polystachya is due to more than one component and we suggest that could be other hydrochalcones for which we present possible structures. This finding would help to dissipate questions about which component is responsible for fluorescence in extracts from the plant and in this way determinate the appropriate use for these fluorophores. Finally, the application and viability as a biosensor using pulmonary epithelium fibroblast cell culture IMR-90 was proved, and in the concentration used are non-toxic materials.


Asunto(s)
Fabaceae/química , Colorantes Fluorescentes/química , Extractos Vegetales/química , Técnicas Biosensibles/métodos , Línea Celular , Epitelio/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fluorescencia , Humanos , Pulmón/efectos de los fármacos , Nanopartículas/química , Dióxido de Silicio/química
5.
Colloids Surf B Biointerfaces ; 180: 141-149, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039515

RESUMEN

The synthesis and applications of anisotropic nanostructures have attracted much attention in the last decade. The nanoflower-type structures are one of the nanomaterials with anisotropic structures most investigated because of owing to high densities of edges, corners, and stepped atoms present on their nano-petals. Here, silver nanoparticles obtained by a one-step green synthesis method using extract from Kalanchoe Daigremontiana´s leaves are reported. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by UV-vis and FTIR. Ag nanoparticles were characterized by UV-vis, XPS, ζ-potential, XRD, and SEM-EDS. Different solvents were used to eliminate agglomeration of the silver nanoparticles. These solvents produced nanoflower-like morphology with abundant nano-petals. This is the first report of the synthesis of Ag nanoflowers formed by green synthesis method using Kalanchoe Daigremontiana extract. The synthesized Ag nanoflowers are faced center cubic structure in nature with a petal thickness approximately of 25 nm. Photocatalytic activity of the different Ag nanostructures was evaluated through the degradation of methylene blue, where the degradation time as low as 1 min is reported. Furthermore these green synthesized Ag nanoflowers were found to show high antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive Staphylococcus aureus.


Asunto(s)
Antibacterianos/química , Tecnología Química Verde , Kalanchoe/química , Nanopartículas del Metal/química , Nanoestructuras/química , Plata/química , Anisotropía , Antibacterianos/farmacología , Catálisis , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Nanopartículas del Metal/ultraestructura , Azul de Metileno/química , Nanoestructuras/ultraestructura , Oxidación-Reducción , Tamaño de la Partícula , Procesos Fotoquímicos , Extractos Vegetales/química , Hojas de la Planta/química , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
6.
Molecules ; 23(11)2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30352987

RESUMEN

Anthocyanins are used for food coloring due their low toxicity and health benefits. They are extracted from different sources, but black carrot has higher anthocyanin content compared with common fruits and vegetables. Here, we study alcoholic anthocyanin extracts from black carrot to enhance their stability. The objective of our research is to determine if microencapsulation with tetraethyl orthosilicate (TEOS) is a feasible option for preventing black carrot anthocyanin degradation. Extraction solvents were solutions of (1) ethanol/acetic acid and (2) ethanol/citric acid. Samples were purified through a resin column and microencapsulated using TEOS. Fourier Transformed Infrared Spectroscopy (FTIR) spectra of samples were obtained, and degradation studies were performed under different conditions of UV radiation, pH and temperature. Antioxidant activity was evaluated with radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and electrochemical cupric reducing antioxidant capacity (CUPRAC). Color evaluation on food models were performed with CIE Lab at the beginning of experiments and after 25 days of storage. Results indicate that the more stable extracts against pH media changes are samples obtained with ethanol/acetic acid solution as extraction solvent. Extract purification through resin and TEOS microencapsulation had no significant effect on extract stability. In conclusion, although TEOS microencapsulation has proven to be effective for some dried materials from natural extracts in our previous research, we do not recommend its use for black carrot extracts considering our results in this particular case.


Asunto(s)
Antocianinas/química , Daucus carota/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Daucus carota/efectos de la radiación , Análisis de los Alimentos , Concentración de Iones de Hidrógeno , Fitoquímicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Rayos Ultravioleta
7.
Polymers (Basel) ; 10(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30961232

RESUMEN

Strength and biocompatibility of composite materials (using a polymer matrix) are used in medicine for various devices such as prostheses and marker clips (biomarkers). Marker clips indicate the site of a lesion in the body, specifically for breast cancer diagnosis or treatment. In general, marker clips are made of steel or titanium, but lately, materials containing biodegradable polymers had been proposed. Our hypothesis is that a copolymer of polylactic acid and poly(ε-caprolactone) (PLA-PCL) could be used as marker clip material. After evaluating different polymer rates performance, metallic nanoparticles (NPs) were included to enhance the stability of the best copolymer and a marker clip prototype was proposed. Characterization of nanoparticles was made by dynamic light scattering (DLS), X-ray diffraction (XRD) and magnetic measurements. Mechanical, thermal and radiopacity properties were evaluated for composites formulation. In vitro, radiopaque experiments showed that BM-2 composite had the best performance. In vivo experiments showed that, after five months, the marker clip prototype maintained its shape, visibility and contrast properties. In consequence, a novel formulation of composite (PLA-PCL/metallic nanoparticles) is suitable for further studies as an alternative material for marker clips for breast cancer lesions.

8.
J Colloid Interface Sci ; 500: 126-132, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28407596

RESUMEN

The styrene (St) emulsion polymerization using Aerosol MA80 as surfactant and in the presence of sodium styrene sulfonate (NaSS) was studied. The effect of NaSS content was assessed using MA80 concentrations below and at the critical micellar concentration. It was found that at the higher NaSS and MA80 contents, the number of particles (N) reaches a maximum of the order of 1017particles/cm3 water, a huge value that has never been reported. In this work an explanation for this super-enhanced particle nucleation phenomenon is proposed. Such hypothesis is based on the role of St-NaSS oligomers formed in the aqueous phase and their synergy with MA80 molecules to provide colloidal stability to the system. The proposal seems to be consistent with the experimental data obtained for the evolution of monomer conversion, N, particles size distribution and the wideness of this latter as well as with a theoretical estimation of the N.

9.
J Colloid Interface Sci ; 466: 44-55, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26704475

RESUMEN

The aim of this work is to formulate biofunctional hybrid materials (HMs) with quercetin (QC) and silica particles (SiPs) by simple methods such as sol-gel and QC conjugation. Physicochemical characterization included particle size, zeta potential (ζ), FTIR and SEM imaging. Spherical particles with ca. 115 nm in diameter were produced, ζ and FTIR demonstrated that QC conjugation was successfully achieved. Electrochemical analyses performed by cyclic voltammetry (CV) suggested that potential binding sites between QC and SiPs may be at functional groups from A ring or C ring, affecting the transfer electron of resorcinol moiety. Iron chelating activity and lipid peroxidation assays showed that after conjugation to SiPs, QC decreased its metal chelating activity, but anti-radical properties is maintained. Our results demonstrated that our proposed method is simple and effective to obtain bio-functional HMs. Our findings prove to be useful in the design of protective approaches against lipid oxidation in food, pharmaceutical, and cosmetics fields.


Asunto(s)
Materiales Biocompatibles/química , Quercetina/química , Dióxido de Silicio/química , Sitios de Unión , Cosméticos/química , Técnicas Electroquímicas , Industria de Alimentos , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
10.
Mater Sci Eng C Mater Biol Appl ; 57: 49-57, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354239

RESUMEN

Several types of dyes or fluorophores are used for the detection of interactions between drug carriers and cells, within biomedicine field. However, many of them have a certain level of toxicity and instability affecting their biological properties. Different studies have demonstrated that nanoparticles (NPs) have interesting properties that could be used to stabilize diverse biomolecules, including dyes. Here, we report the synthesis of a novel nanosystem by the functionalization of silica NPs using biocompounds extracted from Mexican tree "Palo azul" (Eysenhardtia polystachya) and APTES as a coupling agent. Particle size, electrical properties, and morphology of the novel nanosystem were analyzed. The extracted biocompounds presented fluorescence which prevails over time, even after nanosystem formation and apparent cellular internalization. These were detected using MCF-7 cells visualized by confocal laser-scanning microscopy (CLSM), finding that the nanosystem was able to internalize into cells and act as a fluorescent biomarker. By this method, our novel nanosystem opens the possibilities to obtain sensitive data in a noninvasive manner for biological applications, such as early-stage cancer diagnosis, drug delivery, and pathogen detection.


Asunto(s)
Neoplasias de la Mama/patología , Fabaceae/química , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Nanopartículas/química , Dióxido de Silicio/química , Medios de Contraste , Cristalización/métodos , Colorantes Fluorescentes/aislamiento & purificación , Humanos , Células MCF-7 , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...