Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Food Microbiol ; 415: 110644, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38417280

RESUMEN

Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-ß-ionone, ß-ionone, dihydroactinidiolide, linalool oxide, and ß-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.


Asunto(s)
Aspergillus , Bacillus , Norisoprenoides , Ocratoxinas , Vitis , Humanos , Vitis/microbiología , Bacillus/genética , Bacillus/química , Genómica
2.
Food Chem ; 370: 131004, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525425

RESUMEN

A step-by-step approach to easily adapt and use a GC-FID as an olfactometer, as well as a detailed description of acquisition and interpretation of olfactometric data by the OSME (from the Greek word for odor, ὀσµÎ®) method. A Merlot wine was used to exemplifly this strategy and its volatiles were characterized, rendering 43 volatiles in 1D-GC/MS and 142 in GCxGC/MS. GC-O showed the presence of 24 odor-active compounds and GCxGC/MS indicated aditional 14 odor-active compounds, which were found as coelutions. Six compounds (isoamyl acetate, ethyl octanoate, ethyl decanoate, 3-methylthio-1-propanol, carvone, benzyl alcohol and nonanoic acid) were described in 1D-GC-O analyses as having distinct odors by the same and by different assessors. This fact indicated the presence of coeluting bands, which were resolved by GCxGC/MS. The adapted GC-O in combination with the use of GCxGC/MS may be a tool to more accurate investigation of the odor-active compounds of wine.


Asunto(s)
Compuestos Orgánicos Volátiles , Vino , Cromatografía de Gases , Odorantes/análisis , Olfatometría , Compuestos Orgánicos Volátiles/análisis , Vino/análisis
3.
Food Res Int ; 141: 110145, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33642011

RESUMEN

Dehydration of grapes has been used in various regions of the world to produce special wines, aiming to add value to oenological products. Post-harvest dehydration in rooms may be carried out regardless of weather conditions, without the additional cost of a specific infrastructure, in addition to the benefits of protecting the grapes from damages and environmental pollution. The objective of this study was to verify, for the first time, the impact of the dehydration in a naturally ventilated room on the quality of Merlot grapes. Physicochemical characteristics, mycobiota, occurrence of mycotoxins, volatile profile and phenolic composition of grapes were monitored on 7th, 14th and 21st days of dehydration (weight loss of 10, 20 and 27%, respectively). A decrease in aw (6%), pH (4%), and berry hardness (58%), along with an increase in total soluble solid content (15%) were observed during dehydration. The presence of Pestalotiopsis clavispora, Neopestalotiopsis clavispora, Colletotrichum siamense and Alternaria porri was favored during the dehydration process, while a decrease in the occurrence of Aspergillus niger and Phanerochaete sp. was verified. A. niger isolates showed no potential to produce forms of ochratoxins. These toxins were also not found in the grape samples. Regarding the volatile profile, 1-hexanal, 2-hexenal, and 1-octanal gave rise to the corresponding alcohols during dehydration, such as 1-hexanol, 2-hexen-1-ol, and 1-octanol. Acids (hexanoic, decanoic, and 3-hexenoic) resulted in the respective ethyl esters (hexanoate, decanoate, and ethyl 3-hexenoate) during dehydration. Terpenes as limonene, myrcene, and geraniol decreased throughout dehydration, while their biotransformation products (α-terpineol, 6-methyl-5-hepten-2-one, and linalool, respectively) had an increase in concentration. The phenolic content oscillated during dehydration, with an emphasis on increased levels of four hydroxybenzoic acids (ethyl gallate, p-hydroxybenzoic acid, gallic acid-hexose, and gallic acid), two hydroxycinnamic acids (caffeic acid and caftaric acid), two flavonols (kaempeferol galactoside and quercetin) and two anthocyanins (peonidin 3-O-hexoside and delphinidin 3-O-hexoside). Grapes of satisfactory quality were produced by dehydration in a naturally ventilated room. Even small wine producers can be encouraged to implement this procedure for the diversification of oenological products, as it has no costs related to the implementation of chambers/tunnels.


Asunto(s)
Ocratoxinas , Vitis , Vino , Alternaria , Ascomicetos , Colletotrichum , Deshidratación , Ocratoxinas/análisis , Vino/análisis
4.
J Sep Sci ; 44(1): 135-168, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33245848

RESUMEN

The human nose has been used as a detector in gas chromatography analysis to evaluate odoriferous compounds related to aroma and quality of wine. Several olfactometric techniques are available to access the description, intensity, and/or duration of the odor of each compound. Olfactometry can be associated with one-dimensional gas chromatography or multidimensional gas chromatography, including heart-cut gas chromatography and comprehensive two-dimensional gas chromatography. Multidimensional gas chromatography may help to resolve coeluted compounds and detect important trace components for the aroma. The identification of odor-active compounds may help to differentiate wines according to terroir, grapes cultivars used in winemaking or types of aging, understand the role of fungal infection of grapes for wine quality, find the best management practices in vineyard and vinification to obtain the greatest quality. In addition, when the instrumental techniques are combined with sensory analysis, even more accurate information may be obtained regarding the overall wine aroma. This review discloses the state of the art of olfactometric methods and the analytical techniques used to investigate odor-active compounds such as one-dimensional gas chromatography, multidimensional gas chromatography, and comprehensive two-dimensional gas chromatography. The advances in knowledge of wine aroma achieved with the use of these techniques in the target and profiling approaches were also discussed.


Asunto(s)
Odorantes/análisis , Olfatometría , Vino/análisis , Cromatografía de Gases , Humanos
5.
Food Res Int ; 126: 108687, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31732020

RESUMEN

Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.


Asunto(s)
Antioxidantes/análisis , Aspergillus/metabolismo , Ocratoxinas/análisis , Vitis , Vino , Antioxidantes/metabolismo , Ocratoxinas/metabolismo , Odorantes , Vitis/química , Vitis/microbiología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Vino/análisis , Vino/microbiología
6.
Ciênc. rural (Online) ; 49(3): e20180986, 2019. tab
Artículo en Inglés | LILACS | ID: biblio-1045316

RESUMEN

ABSTRACT: The goals of this study were to verify the occurrence of furfuryl alcohol (FA) and carbonyl compounds (acetaldehyde, acrolein, ethyl carbamate (EC), formaldehyde and furfural) in sparkling wines and to evaluate, for the first time, whether the consumption of the samples under study could represent risk to consumers health. These compounds are electrophilic; and therefore, may covalently bind to DNA, which may result in mutagenicity. EC and formaldehyde were present at low levels (<1μg L-1) in all samples. Acetaldehyde, furfural and acrolein were also found in low levels (<1.5, 1.4 and 1.0μg L-1, respectively) in 57, 71 and 76% of samples. In the other samples, levels of acetaldehyde, furfural and acrolein ranged from 5.2 to 54.8, 10.5 to 41.0 and 20.3 to 36.7μg L-1, respectively. Furfuryl alcohol was also reported in all samples in levels from 10.4 to 33.5μg L-1. Acrolein was the only compound reported at levels sufficient to represent risk to health, which occurred in 24% of the samples. A study focused on the origin of acrolein deserves attention, investigating the influence of the concentration of precursors and the role of fermentation in the formation of this aldehyde, besides the evaluation of possible environmental contamination of grapes during cultivation.


RESUMO: Os objetivos deste estudo foram verificar a ocorrência de álcool furfurílico (FA) e compostos carbonílicos (acetaldeído, acroleína, carbamato de etila (CE), formaldeído e furfural) em espumantes e avaliar, pela primeira vez, se o consumo das amostras em estudo poderia representar risco para a saúde do consumidor. Esses compostos são eletrofílicos e, portanto, podem se ligar covalentemente ao DNA, o que pode resultar em mutagenicidade. CE e formaldeído foram encontrados em baixos níveis (<1μg/L) em todas as amostras. Acetaldeído, furfural e acroleína também foram encontrados em baixos níveis (<1,5; 1,4 e 1,0μg L-1, respectivamente) em 57, 71 e 76% das amostras. Nas demais amostras, os níveis de acetaldeído, furfural e acroleína variaram de 5,2 a 54,8, 10,5 a 41,0 e 20,3 a 36,7μg L-1, respectivamente. O álcool furfurílico também foi encontrado em todas as amostras em níveis de 10,4 a 33,5μg L-1. A acroleína foi o único composto encontrado em níveis suficientes para representar risco à saúde, que ocorreu em 24% das amostras. Uma avaliação focada na origem da acroleína merece atenção, investigando a influência da concentração dos precursores e o papel da fermentação na formação do aldeído, além da avaliação da possível contaminação ambiental das uvas durante o cultivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...