Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(50): eadj4074, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100589

RESUMEN

The recently demonstrated chiral modes of lattice motion carry angular momentum and therefore directly couple to magnetic fields. Notably, their magnetic moments are predicted to be strongly influenced by electronic contributions. Here, we have studied the magnetic response of transverse optical phonons in a set of Pb1-xSnxTe films, which is a topological crystalline insulator for x > 0.32 and has a ferroelectric transition at an x-dependent critical temperature. Polarization-dependent terahertz magnetospectroscopy measurements revealed Zeeman splittings and diamagnetic shifts, demonstrating a large phonon magnetic moment. Films in the topological phase exhibited phonon magnetic moment values that were larger than those in the topologically trivial samples by two orders of magnitude. Furthermore, the sign of the effective phonon g-factor was opposite in the two phases, a signature of the topological transition according to our model. These results strongly indicate the existence of interplay between the magnetic properties of chiral phonons and the topology of the electronic band structure.

2.
Phys Rev Lett ; 128(7): 075901, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244438

RESUMEN

PbTe crystals have a soft transverse optical phonon mode in the terahertz frequency range, which is known to efficiently decay into heat-carrying acoustic phonons, resulting in anomalously low thermal conductivity. Here, we studied this phonon via polarization-dependent terahertz spectroscopy. We observed softening of this mode with decreasing temperature, indicative of incipient ferroelectricity, which we explain through a model including strong anharmonicity with a quartic displacement term. In magnetic fields up to 25 T, the phonon mode splits into two modes with opposite handedness, exhibiting circular dichroism. Their frequencies display Zeeman splitting together with an overall diamagnetic shift with increasing magnetic field. Using a group-theoretical approach, we demonstrate that these observations are the result of magnetic field-induced morphic changes in the crystal symmetries through the Lorentz force exerted on the lattice ions. Thus, our Letter reveals a novel process of controlling phonon properties in a soft ionic lattice by a strong magnetic field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...