Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 155(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36893011

RESUMEN

Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.


Asunto(s)
Calcio , Cardiomiopatía Hipertrófica , Humanos , Calcio/metabolismo , Ingeniería de Tejidos , Contracción Miocárdica , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Miocitos Cardíacos/metabolismo , Mutación
2.
J Mol Cell Cardiol ; 167: 118-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413295

RESUMEN

Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.


Asunto(s)
Adrenérgicos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Señalización del Calcio , Acoplamiento Excitación-Contracción , Miocitos Cardíacos/metabolismo , Conejos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
J Transl Med ; 19(1): 149, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853637

RESUMEN

BACKGROUND: Mesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have immunomodulatory properties that are of interest to treat novel coronavirus disease 2019 (COVID-19). Leng et al. recently reported that hUC-MSCs derived from one donor negatively expressed Angiotensin-Converting Enzyme 2 (ACE2), a key protein for viral infection along with Transmembrane Serine Protease 2 (TMPRSS2). The purpose of this study was to quantify the expression of ACE2 and TMPRSS2 in hUC-MSCs lots derived from multiple donors using molecular-based techniques in order to demonstrate their inability to be a host to SARS-CoV-2. METHODS: Expression of ACE2 and TMPRSS2 was analyzed in 24 lots of hUC-MSCs derived from Wharton's jelly via quantitative polymerase chain reaction (qPCR), Western Blot, immunofluorescence and flow cytometry using 24 different donors. RESULTS: hUC-MSCs had significantly lower ACE2 (p = 0.002) and TMPRSS2 (p = 0.008) expression compared with human lung tissue homogenates in Western blot analyses. Little to no expression of ACE2 was observed in hUC-MSC by qPCR, and they were not observable with immunofluorescence in hUC-MSCs cell membranes. A negative ACE2 and TMPRSS2 population percentage of 95.3% ± 15.55 was obtained for hUC-MSCs via flow cytometry, with only 4.6% ACE2 and 29.5% TMPRSS2 observable positive populations. CONCLUSIONS: We have demonstrated negative expression of ACE2 and low expression of TMPRSS2 in 24 lots of hUC-MSCs. This has crucial implications for the design of future therapeutic options for COVID-19, since hUC-MSCs would have the ability to "dodge" viral infection to exert their immunomodulatory effects.


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Enzima Convertidora de Angiotensina 2 , Humanos , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Serina Endopeptidasas/genética , Cordón Umbilical
4.
J Am Heart Assoc ; 8(20): e012748, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597508

RESUMEN

Background Atrial fibrillation often occurs in the setting of hypertension and associated atrial dilation with pathologically increased cardiomyocyte stretch. In the setting of atrial dilation, mechanoelectric feedback has been linked to the development of ectopic beats that trigger paroxysmal atrial fibrillation mainly originating from pulmonary veins (PVs). However, the precise mechanisms remain poorly understood. Methods and Results We identify mechanosensitive, swelling-activated chloride ion channels (ICl,swell) as a crucial component of the caveolar mechanosensitive complex in rat and human cardiomyocytes. In vitro optical mapping of rat PV, single rat PV, and human cardiomyocyte patch clamp studies showed that stretch-induced activation of ICl,swell leads to membrane depolarization and decreased action potential amplitude, which trigger conduction discontinuities and both ectopic and reentrant activities within the PV. Reverse transcription quantitative polymerase chain reaction, immunofluorescence, and coimmunoprecipitation studies showed that ICl,swell likely consists of at least 2 components produced by mechanosensitive ClC-3 (chloride channel-3) and SWELL1 (also known as LRRC8A [leucine rich repeat containing protein 8A]) chloride channels, which form a macromolecular complex with caveolar scaffolding protein Cav3 (caveolin 3). Downregulation of Cav3 protein expression and disruption of caveolae structures during chronic hypertension in spontaneously hypertensive rats facilitates activation of ICl,swell and increases PV sensitivity to stretch 10- to 50-fold, promoting the development of atrial fibrillation. Conclusions Our findings identify caveolae-mediated activation of mechanosensitive ICl,swell as a critical cause of PV ectopic beats that can initiate atrial arrhythmias including atrial fibrillation. This mechanism is exacerbated in the setting of chronically elevated blood pressures.


Asunto(s)
Fibrilación Atrial/fisiopatología , Caveolas/metabolismo , Canales de Cloruro/metabolismo , Atrios Cardíacos/fisiopatología , Venas Pulmonares/metabolismo , Potenciales de Acción , Animales , Fibrilación Atrial/metabolismo , Modelos Animales de Enfermedad , Atrios Cardíacos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Venas Pulmonares/fisiopatología , Ratas , Ratas Endogámicas Dahl , Ratas Wistar
5.
JCI Insight ; 52019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30835254

RESUMEN

Hypertrophic cardiomyopathy (HCM) is triggered mainly by mutations in genes encoding sarcomeric proteins, but a significant proportion of patients lack a genetic diagnosis. We identified a novel mutation in the ryanodine receptor 2, RyR2-P1124L, in a patient from a genotype-negative HCM cohort. The aim of this study was to determine whether RyR2-P1124L triggers functional and structural alterations in isolated RyR2 channels and whole hearts. We found that P1124L induces significant conformational changes in the SPRY2 domain of RyR2. Recombinant RyR2-P1124L channels displayed a cytosolic loss-of-function phenotype, which contrasted with a higher sensitivity to luminal [Ca2+], indicating a luminal gain-of-function. Homozygous mice for RyR2-P1124L showed mild cardiac hypertrophy, similar to the human patient. This phenotype, evident at 1 yr of age, was accompanied by an increase in the expression of calmodulin (CaM). P1124L mice also showed higher susceptibility to arrhythmia at 8 mo of age, before the onset of hypertrophy. RyR2-P1124L has a distinct cytosolic loss-of-function and a luminal gain-of-function phenotype. This bifunctionally-divergent behavior triggers arrhythmias and structural cardiac remodeling, and involves overexpression of calmodulin as a potential hypertrophic mediator. This study is relevant to continue elucidating the possible causes of genotype-negative HCM and the role of RyR2 in cardiac hypertrophy.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Predisposición Genética a la Enfermedad/genética , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Adolescente , Animales , Arritmias Cardíacas/metabolismo , Calmodulina/metabolismo , Cardiomegalia/patología , Ecocardiografía , Femenino , Células HEK293 , Corazón/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Fenotipo , Conformación Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas , Análisis de Secuencia de Proteína
6.
Circ Arrhythm Electrophysiol ; 11(3): e005659, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29540372

RESUMEN

BACKGROUND: The mechanisms underlying spontaneous atrial fibrillation (AF) associated with atrial ischemia/infarction are incompletely elucidated. Here, we investigate the mechanisms underlying spontaneous AF in an ovine model of left atrial myocardial infarction (LAMI). METHODS AND RESULTS: LAMI was created by ligating the atrial branch of the left anterior descending coronary artery. ECG loop recorders were implanted to monitor AF episodes. In 7 sheep, dantrolene-a ryanodine receptor blocker-was administered in vivo during the 8-day observation period (LAMI-D, 2.5 mg/kg, IV, BID). LAMI animals experienced numerous spontaneous AF episodes during the 8-day monitoring period that were suppressed by dantrolene (LAMI, 26.1±5.1; sham, 4.3±1.1; LAMI-D, 2.8±0.8; mean±SEM episodes per sheep, P<0.01). Optical mapping showed spontaneous focal discharges (SFDs) originating from the ischemic/normal-zone border. SFDs were calcium driven, rate dependent, and enhanced by isoproterenol (0.03 µmol/L, from 210±87 to 3816±1450, SFDs per sheep) but suppressed by dantrolene (to 55.8±32.8, SFDs per sheep, mean±SEM). SFDs initiated AF-maintaining reentrant rotors anchored by marked conduction delays at the ischemic/normal-zone border. NOS1 (NO synthase-1) protein expression decreased in ischemic zone myocytes, whereas NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) oxidase and xanthine oxidase enzyme activities and reactive oxygen species (DCF [6-carboxy-2',7'-dichlorodihydrofluorescein diacetate]-fluorescence) increased. CaM (calmodulin) aberrantly increased [3H]ryanodine binding to cardiac RyR2 (ryanodine receptors) in the ischemic zone. Dantrolene restored the physiological binding of CaM to RyR2. CONCLUSIONS: Atrial ischemia causes spontaneous AF episodes in sheep, caused by SFDs that initiate reentry. Nitroso-redox imbalance in the ischemic zone is associated with intense reactive oxygen species production and altered RyR2 responses to CaM. Dantrolene administration normalizes the CaM response, prevents LAMI-related SFDs, and AF initiation. These findings provide novel insights into the mechanisms underlying ischemia-related atrial arrhythmias.


Asunto(s)
Fibrilación Atrial/complicaciones , Dantroleno/farmacología , Isquemia Miocárdica/etiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Western Blotting , Señalización del Calcio , Modelos Animales de Enfermedad , Atrios Cardíacos , Masculino , Relajantes Musculares Centrales/farmacología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Ovinos
7.
Sci China Life Sci ; 58(1): 54-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25480325

RESUMEN

Ryanodine receptors (RyRs) are the calcium release channels of sarcoplasmic reticulum (SR) that provide the majority of calcium ions (Ca(2+)) necessary to induce contraction of cardiac and skeletal muscle cells. In their intracellular environment, RyR channels are regulated by a variety of cytosolic and luminal factors so that their output signal (Ca(2+)) induces finely-graded cell contraction without igniting cellular processes that may lead to aberrant electrical activity (ventricular arrhythmias) or cellular remodeling. The importance of RyR dysfunction has been recently highlighted with the demonstration that point mutations in RYR2, the gene encoding for the cardiac isoform of the RyR (RyR2), are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmogenic syndrome characterized by the development of adrenergically-mediated ventricular tachycardia in individuals with an apparently normal heart. Here we summarize the state of the field in regards to the main arrhythmogenic mechanisms triggered by RyR2 channels harboring mutations linked to CPVT. Most CPVT mutations characterized to date endow RyR2 channels with a gain of function, resulting in hyperactive channels that release Ca(2+) spontaneously, especially during diastole. The spontaneous Ca(2+) release is extruded by the electrogenic Na(+)/Ca(2+) exchanger, which depolarizes the external membrane (delayed afterdepolarization or DAD) and may trigger untimely action potentials. However, a rare set of CPVT mutations yield RyR2 channels that are intrinsically hypo-active and hypo-responsive to stimuli, and it is unclear whether these channels release Ca(2+) spontaneously during diastole. We discuss novel cellular mechanisms that appear more suitable to explain ventricular arrhythmias due to RyR2 loss-of-function mutations.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Humanos , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...