Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585824

RESUMEN

Background: Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. Results: We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships. We validated the accuracy of our software by simulating genomes onto diverse family pedigree structures, showing that the estimated kinship coefficients closely approximated expected values. Conclusions: py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.

2.
Angew Chem Int Ed Engl ; 62(13): e202214855, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36722146

RESUMEN

Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.


Asunto(s)
Óxido Nítrico , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Xantenos , Diagnóstico por Imagen/métodos , Colorantes Fluorescentes , Imagen Óptica
3.
ACS Chem Biol ; 16(11): 2124-2129, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34669367

RESUMEN

The widespread adoption of the bioorthogonal chemical reporter strategy revolutionized chemical biology. However, its translation to living mammals has been challenging, due to the size/stability properties of the chemical reporter group and/or the reaction kinetics of the labeling step. While developing new bioorthogonal reactions has been the traditional approach to optimizing the bioorthogonal chemical reporter strategy, here we present a different avenue, leveraging intermolecular interactions, to create bioorthogonal host-guest pairs. This approach, deemed "bioorthogonal complexation, does not rely on activated functional groups or second-order rate constants. We utilize the cucurbit[7]uril (CB[7]) scaffold to showcase bioorthogonal complexation and determine that medium-affinity (Ka ≈ 108-109 M-1) guests efficiently label cell surfaces and outperform the strain-promoted azide-alkyne cycloaddition. Finally, we implement bioorthogonal complexation in the chemical reporter strategy through the metabolic incorporation of ortho-carborane into cell-surface glycans and detection with a CB[7]-fluorescein conjugate.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Membrana Celular , Reacción de Cicloadición , Colorantes Fluorescentes/química , Humanos , Células Jurkat , Estructura Molecular , Coloración y Etiquetado
4.
J Am Chem Soc ; 142(49): 20513-20518, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33253553

RESUMEN

High-affinity guests have been reported for the macrocyclic host cucurbit[7]uril (CB[7]), enabling widespread applications, but hindering CB[7] materials from being returned to their guest-free state for reuse. Here, we present polyhedral boron clusters (carboranes) as strongly binding, yet easily removable, guests for CB[7]. Aided by a Pd-catalyzed coupling of an azide anion, we prepared boron-functionalized 9-amino-ortho-carborane that binds to CB[7] with a Ka ≈ 1010 M-1. Upon basic treatment, ortho-carborane readily undergoes deboronation to yield anionic nido-carborane, a poor guest for CB[7], facilitating recovery of guest-free CB[7]. We showcase the utility of the modified ortho-carborane guest by recycling a CB[7]-functionalized resin. With this report, we introduce stimuli-responsive decomplexation as an additional consideration in the design of high-affinity host-guest complexes.


Asunto(s)
Compuestos de Boro/química , Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Azidas/química , Catálisis , Cinética , Paladio/química
5.
PLoS Comput Biol ; 16(9): e1007833, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32881872

RESUMEN

Since 2015, we have run a free 9-week summer program that provides non-computer science (CS) undergraduates at San Francisco State University (SFSU) with experience in coding and doing research. Undergraduate research experiences remain very limited at SFSU and elsewhere, so the summer program provides opportunities for many more students beyond the mentoring capacity of our university laboratories. In addition, we were concerned that many students from historically underrepresented (HU) groups may be unable to take advantage of traditional summer research programs because these programs require students to relocate or be available full time, which is not feasible for students who have family, work, or housing commitments. Our program, which is local and part-time, serves about 5 times as many students as a typical National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program, on a smaller budget. Based on our experiences, we present 10 simple rules for busy faculty who want to create similar programs to engage non-CS HU undergraduates in computational research. Note that while some of the strategies we implement are based on evidence-based publications in the social sciences or education research literature, the original suggestions we make here are based on our trial-and-error experiences, rather than formal hypothesis testing.


Asunto(s)
Metodologías Computacionales , Educación/métodos , Universidades , Humanos , Ciencia de la Información/educación , Ciencia de la Información/organización & administración , Internet , Desarrollo de Programa , San Francisco , Estudiantes
6.
Curr Opin Chem Biol ; 57: 114-121, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32769068

RESUMEN

Acoustic-based imaging modalities (e.g. ultrasonography and photoacoustic imaging) have emerged as powerful approaches to noninvasively visualize the interior of the body due to their biocompatibility and the ease of sound transmission in tissue. These technologies have recently been augmented with an array of chemical tools that enable the study and modulation of the tumor microenvironment at the molecular level. In addition, the application of ultrasound and ultrasound-responsive materials has been used for drug delivery with high spatiotemporal control. In this review, we highlight recent advances (in the last 2-3 years) in acoustic-based chemical tools and technologies suitable for furthering our understanding of molecular events in complex tumor microenvironments.


Asunto(s)
Neoplasias/patología , Microambiente Tumoral , Animales , Humanos , Imagen Molecular/métodos , Técnicas Fotoacústicas/métodos , Ultrasonografía/métodos
7.
RSC Med Chem ; 11(3): 392-410, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479645

RESUMEN

A potent class of isoquinoline-based α-N-heterocyclic carboxaldehyde thiosemicarbazone (HCT) compounds has been rediscovered; based upon this scaffold, three series of antiproliferative agents were synthesized through iterative rounds of methylation and fluorination modifications, with anticancer activities being potentiated by physiologically relevant levels of copper. The lead compound, HCT-13, was highly potent against a panel of pancreatic, small cell lung carcinoma, prostate cancer, and leukemia models, with IC50 values in the low-to-mid nanomolar range. Density functional theory (DFT) calculations showed that fluorination at the 6-position of HCT-13 was beneficial for ligand-copper complex formation, stability, and ease of metal-center reduction. Through a chemical genomics screen, we identify DNA damage response/replication stress response (DDR/RSR) pathways, specifically those mediated by ataxia-telangiectasia and Rad3-related protein kinase (ATR), as potential compensatory mechanism(s) of action following HCT-13 treatment. We further show that the cytotoxicity of HCT-13 is copper-dependent, that it promotes mitochondrial electron transport chain (mtETC) dysfunction, induces production of reactive oxygen species (ROS), and selectively depletes guanosine nucleotide pools. Lastly, we identify metabolic hallmarks for therapeutic target stratification and demonstrate the in vivo efficacy of HCT-13 against aggressive models of acute leukemias in mice.

8.
J Biol Inorg Chem ; 24(5): 621-632, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31250199

RESUMEN

Triapine (3-AP), is an iron-binding ligand and anticancer drug that is an inhibitor of human ribonucleotide reductase (RNR). Inhibition of RNR by 3-AP results in the depletion of dNTP precursors of DNA, thereby selectively starving fast-replicating cancer cells of nucleotides for survival. The redox-active form of 3-AP directly responsible for inhibition of RNR is the Fe(II)(3-AP)2 complex. In this work, we synthesize 12 analogs of 3-AP, test their inhibition of RNR in vitro, and study the electronic properties of their iron complexes. The reduction and oxidation events of 3-AP iron complexes that are crucial for the inhibition of RNR are modeled with solution studies. We monitor the pH necessary to induce reduction in iron complexes of 3-AP analogs in a reducing environment, as well as the kinetics of oxidation in an oxidizing environment. The oxidation state of the complex is monitored using UV-Vis spectroscopy. Isoquinoline analogs of 3-AP favor the maintenance of the biologically active reduced complex and possess oxidation kinetics that allow redox cycling, consistent with their effective inhibition of RNR seen in our in vitro experiments. In contrast, methylation on the thiosemicarbazone secondary amine moiety of 3-AP produces analogs that form iron complexes with much higher redox potentials, that do not redox cycle, and are inactive against RNR in vitro. The catalytic subunit of human Ribonucleotide Reductase (RNR), contains a tyrosyl radical in the enzyme active site. Fe(II) complexes of 3-AP and its analogs can quench the radical and, subsequently, inactivate RNR. The potency of RNR inhibitors is highly dependent on the redox properties of the iron complexes, which can be tuned by ligand modifications. Complexes are found to be active within a narrow redox window imposed by the cellular environment.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hierro/química , Piridinas/química , Tiosemicarbazonas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Electroquímica/métodos , Humanos , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/metabolismo , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...