Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ther Adv Hematol ; 15: 20406207231218157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38186638

RESUMEN

Background: Erythropoiesis stimulating agents (ESAs) are the first-line therapy in patients with lower-risk myelodysplastic syndromes (LR-MDS). Some predictive factors for ESAs response have been identified. Type and number of somatic mutations have been associated with prognosis and response to therapies in MDS patients. Objectives: The objective was to evaluate the outcomes after ESAs in patients with LR-MDS and to address the potential predictive value of somatic mutations in ESAs-treated patients. Design: Multi-center retrospective study of a cohort of 722 patients with LR-MDS included in the SPRESAS (Spanish Registry of Erythropoietic Stimulating Agents Study) study. Retrospective analysis of 65 patients with next generation sequencing (NGS) data from diagnosis. Methods: ESAs' efficacy and safety were evaluated in patients receiving ESAs and best supportive care (BSC). To assess the potential prognostic value of somatic mutations in erythroid response (ER) rate and outcome, NGS was performed in responders and non-responders. Results: ER rate for ESAs-treated patients was 65%. Serum erythropoietin (EPO) level <200 U/l was the only variable significantly associated with a higher ER rate (odds ratio, 2.45; p = 0.036). Median overall survival (OS) in patients treated with ESAs was 6.7 versus 3.1 years in patients receiving BSC (p < 0.001). From 65 patients with NGS data, 57 (87.7%) have at least one mutation. We observed a trend to a higher frequency of ER among patients with a lower number of mutated genes (40.4% in <3 mutated genes versus 22.2% in ⩾3; p = 0.170). The presence of ⩾3 mutated genes was also significantly associated with worse OS (hazard ratio, 2.8; p = 0.015), even in responders. A higher cumulative incidence of acute myeloid leukemia progression at 5 years was also observed in patients with ⩾3 mutated genes versus <3 (33.3% and 10.7%, respectively; p < 0.001). Conclusion: This large study confirms the beneficial effect of ESAs and the adverse effect of somatic mutations in patients with LR-MDS.

2.
Clin Transl Med ; 11(2): e304, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33634999

RESUMEN

BACKGROUND: Several genetic alterations have been identified as driver events in chronic lymphocytic leukemia (CLL) pathogenesis and oncogenic evolution. Concurrent driver alterations usually coexist within the same tumoral clone, but how the cooperation of multiple genomic abnormalities contributes to disease progression remains poorly understood. Specifically, the biological and clinical consequences of concurrent high-risk alterations such as del(11q)/ATM-mutations and del(17p)/TP53-mutations have not been established. METHODS: We integrated next-generation sequencing (NGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 techniques to characterize the in vitro and in vivo effects of concurrent monoallelic or biallelic ATM and/or TP53 alterations in CLL prognosis, clonal evolution, and therapy response. RESULTS: Targeted sequencing analysis of the co-occurrence of high-risk alterations in 271 CLLs revealed that biallelic inactivation of both ATM and TP53 was mutually exclusive, whereas monoallelic del(11q) and TP53 alterations significantly co-occurred in a subset of CLL patients with a highly adverse clinical outcome. We determined the biological effects of combined del(11q), ATM and/or TP53 mutations in CRISPR/Cas9-edited CLL cell lines. Our results showed that the combination of monoallelic del(11q) and TP53 mutations in CLL cells led to a clonal advantage in vitro and in in vivo clonal competition experiments, whereas CLL cells harboring biallelic ATM and TP53 loss failed to compete in in vivo xenotransplants. Furthermore, we demonstrated that CLL cell lines harboring del(11q) and TP53 mutations show only partial responses to B cell receptor signaling inhibitors, but may potentially benefit from ATR inhibition. CONCLUSIONS: Our work highlights that combined monoallelic del(11q) and TP53 alterations coordinately contribute to clonal advantage and shorter overall survival in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Deleción Cromosómica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Pronóstico
3.
Int J Cancer ; 147(10): 2780-2792, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32720348

RESUMEN

Chromosome 14q32 rearrangements/translocations involving the immunoglobulin heavy chain (IGH) are rarely detected in chronic lymphocytic leukemia (CLL). The prognostic significance of the IGH translocation is controversial and its mutational profile remains unknown. Here, we present for the first time a comprehensive next-generation sequencing (NGS) analysis of 46 CLL patients with IGH rearrangement (IGHR-CLLs) and we demonstrate that IGHR-CLLs have a distinct mutational profile with recurrent mutations in NOTCH1, IGLL5, POT1, BCL2, FBXW7, ZMYM3, MGA, BRAF and HIST1H1E genes. Interestingly, BCL2 and FBXW7 mutations were significantly associated with this subgroup and almost half of BCL2, IGLL5 and HISTH1E mutations reported were previously identified in non-Hodgkin lymphomas. Notably, IGH/BCL2 rearrangements were associated with a lower mutation frequency and carried BCL2 and IGLL5 mutations, while the other IGHR-CLLs had mutations in genes related to poor prognosis (NOTCH1, SF3B1 and TP53) and shorter time to first treatment (TFT). Moreover, IGHR-CLLs patients showed a shorter TFT than CLL patients carrying 13q-, normal fluorescence in situ hybridization (FISH) and +12 CLL, being this prognosis particularly poor when NOTCH1, SF3B1, TP53, BIRC3 and BRAF were also mutated. The presence of these mutations not only was an independent risk factor within IGHR-CLLs, but also refined the prognosis of low-risk cytogenetic patients (13q-/normal FISH). Hence, our study demonstrates that IGHR-CLLs have a distinct mutational profile from the majority of CLLs and highlights the relevance of incorporating NGS and the status of IGH by FISH analysis to refine the risk-stratification CLL model.


Asunto(s)
Redes Reguladoras de Genes , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Translocación Genética , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 14/genética , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Secuencia de ADN
5.
Cancer Genet ; 242: 15-24, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980417

RESUMEN

The diagnosis and risk stratification of multiple myeloma (MM) is based on clinical and cytogenetic tests. Magnetic CD138 enrichment followed by interphase FISH (fluorescence in situ hybridisation) is the gold standard to identify prognostic translocations and copy number alterations (CNA). Although clinical implications of gene expression profiling (GEP) or panel based sequencing results are evident, those tests have not yet reached routine clinical application. We set up a single workflow to analyse MM of 211 patients at first diagnosis by whole genome sequencing (WGS) and RNA-Seq and validate the results by FISH analysis. We observed a 96% concordance of FISH and WGS results when assessing translocations involving the IGH locus and an overall concordance of FISH and WGS of 92% when assessing CNA. WGS analysis resulted in the identification of 17 additional MYC-translocations that were missed by FISH analysis. RNA-Seq followed by supervised clustering grouped patients in their expected genetically defined subgroup and prompted the assessment of WGS data in cases that were not congruent with FISH. This allowed the identification of additional IGH-translocations and hyperdiploid cases. We show the reliability of WGS an RNA-Seq in a clinical setting, which is a prerequisite for a novel routine diagnostic test.


Asunto(s)
Mieloma Múltiple/diagnóstico , RNA-Seq , Secuenciación Completa del Genoma , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Médula Ósea/patología , Variaciones en el Número de Copia de ADN , Pruebas Diagnósticas de Rutina , Femenino , Perfilación de la Expresión Génica , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Medición de Riesgo , Eliminación de Secuencia , Sindecano-1/genética , Translocación Genética
6.
Leukemia ; 34(6): 1599-1612, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31974435

RESUMEN

The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Leucemia Linfocítica Crónica de Células B/genética , Mutagénesis Sitio-Dirigida/métodos , Adenina/análogos & derivados , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Sinergismo Farmacológico , Humanos , Ratones , Mutación , Ftalazinas/farmacología , Piperazinas/farmacología , Piperidinas , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas c-bcr/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Platelets ; 31(8): 993-1000, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31838946

RESUMEN

In the last years, the use of thrombopoietin receptor agonists (TPO-RA), eltrombopag and romiplostim, has improved the management of immune thrombocytopenia (ITP). Moreover, eltrombopag is also active in patients with aplastic anemia and myelodysplastic syndrome. However, their mechanisms of action and signaling pathways still remain controversial. In order to gain insight into the mechanisms underlying eltrombopag therapy, a gene expression profile (GEP) analysis in patients treated with this drug was carried out. Fourteen patients with chronic ITP were studied by means of microarrays before and during eltrombopag treatment. Median age was 78 years (range, 35-87 years); median baseline platelet count was 14 × 109/L (range, 2-68 × 109/L). Ten patients responded to the therapy, two cases relapsed after an initial response and the remaining two were refractory to the therapy. Eltrombopag induced relevant changes in the hematopoiesis, platelet activation and degranulation, as well as in megakaryocyte differentiation, with overexpression of some transcription factors and the genes PPBP, ITGB3, ITGA2B, F13A1, F13A1, MYL9 and ITGA2B. In addition, GP1BA, PF4, ITGA2B, MYL9, HIST1H4H and HIST1H2BH, genes regulated by RUNX1 were also significantly enriched after eltrombopag therapy. Furthermore, in non-responder patients, an overexpression of Bcl-X gene and genes involved in erythropoiesis, such as SLC4A1 and SLC25A39, was also observed. To conclude, overexpression in genes involved in megakaryopoiesis, platelet adhesion, degranulation and aggregation was observed in patients treated with eltrombopag. Moreover, an important role regarding heme metabolism was also present in non-responder patients.


Asunto(s)
Benzoatos/uso terapéutico , Hidrazinas/uso terapéutico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Pirazoles/uso terapéutico , Transcriptoma/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Benzoatos/farmacología , Femenino , Humanos , Hidrazinas/farmacología , Masculino , Persona de Mediana Edad , Pirazoles/farmacología
8.
Ann Hematol ; 98(9): 2151-2162, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31312927

RESUMEN

Somatic mutations in patients with myelodysplastic syndromes (MDS) undergoing allogeneic hematopoietic stem cell transplantation (HSTC) are associated with adverse outcome, but the role of chronic graft-versus-host disease (cGVHD) in this subset of patients remains unknown. We analyzed bone marrow samples from 115 patients with MDS collected prior to HSCT using next-generation sequencing. Seventy-one patients (61%) had at least one mutated gene. We found that patients with a higher number of mutated genes (more than 2) had a worse outcome (2 years overall survival [OS] 54.8% vs. 31.1%, p = 0.035). The only two significant variables in the multivariate analysis for OS were TET2 mutations (p = 0.046) and the development of cGVHD, considered as a time-dependent variable (p < 0.001), correlated with a worse and a better outcome, respectively. TP53 mutations also demonstrated impact on the cumulative incidence of relapse (CIR) (1 year CIR 47.1% vs. 9.8%, p = 0.006) and were related with complex karyotype (p = 0.003). cGVHD improved the outcome even among patients with more than 2 mutated genes (1-year OS 88.9% at 1 year vs. 31.3%, p = 0.02) and patients with TP53 mutations (1-year CIR 20% vs. 42.9%, p = 0.553). These results confirm that cGVHD could ameliorate the adverse impact of somatic mutations in patients with MDS with HSCT.


Asunto(s)
Aberraciones Cromosómicas , Enfermedad Injerto contra Huésped/genética , Trasplante de Células Madre Hematopoyéticas , Síndromes Mielodisplásicos/genética , Aloinjertos , Médula Ósea/patología , Enfermedad Crónica , Femenino , Enfermedad Injerto contra Huésped/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/terapia , Estudios Retrospectivos
9.
PLoS One ; 14(5): e0216674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071190

RESUMEN

CRISPR/Cas9 allows the generation of knockout cell lines and null zygotes by inducing site-specific double-stranded breaks. In most cases the DSB is repaired by non-homologous end joining, resulting in small nucleotide insertions or deletions that can be used to construct knockout alleles. However, these mutations do not produce the desired null result in all cases, but instead generate a similar, functionally active protein. This effect could limit the therapeutic efficiency of gene therapy strategies based on abrogating oncogene expression, and therefore needs to be considered carefully. If there is an acceptable degree of efficiency of CRISPR/Cas9 delivery to cells, the key step for success lies in the effectiveness of a specific sgRNA at knocking out the oncogene, when only one sgRNA can be used. This study shows that the null effect could be increased with an sgRNA targeting the splice donor site (SDS) of the chosen exon. Following this strategy, the generation of null alleles would be facilitated in two independent ways: the probability of producing a frameshift mutation and the probability of interrupting the canonical mechanism of pre-mRNA splicing. In these contexts, we propose to improve the loss-of-function yield driving the CRISPR system at the SDS of critical exons.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Sitios de Empalme de ARN/genética , ARN Guía de Kinetoplastida/genética , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular , Exones , Edición Génica/métodos , Humanos , Células K562 , Ratones , Monofenol Monooxigenasa/genética , Proteínas Proto-Oncogénicas c-abl/genética
10.
Exp Hematol ; 72: 9-13, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30807786

RESUMEN

The presence of chromosomal gains other than trisomy 12 suggesting a hyperdiploid karyotype is extremely rare in chronic lymphocytic leukemia (CLL) and is associated with a dismal prognosis. However, the genetic mechanisms and mutational background of these patients have not been fully explored. To improve our understanding of the genetic underpinnings of this subgroup of CLL, seven CLL patients with several chromosomal gains were sequenced using a next-generation sequencing (NGS)-targeted approach. The mutational status of 54 genes was evaluated using a custom-designed gene panel including recurrent mutated genes observed in CLL and widely associated with CLL pathogenesis. A total of 21 mutations were detected; TP53 (42.8%), ATM (28.5%), SF3B1 (28.5%), and BRAF (28.5%) were the most recurrently mutated genes. Of these mutations, 61.9% were detected in genes previously associated with a poor prognosis in CLL. Interestingly, five of the seven patients exhibited alterations in TP53 or ATM (deletion and/or mutation), genes involved in the DNA damage response (DDR), which could be related to a high genetic instability in this subgroup of patients. In conclusion, CLL patients with several chromosomal gains exhibit high genetic instability, with mutations in CLL driver genes and high-risk genetic alterations involving ATM and/or TP53 genes.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos/genética , Daño del ADN/genética , Leucemia Linfocítica Crónica de Células B/genética , Proteínas de Neoplasias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad
11.
J Hematol Oncol ; 10(1): 83, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28399885

RESUMEN

BACKGROUND: Chronic lymphocytic leukemia (CLL) is a highly genetically heterogeneous disease. Although CLL has been traditionally considered as a mature B cell leukemia, few independent studies have shown that the genetic alterations may appear in CD34+ hematopoietic progenitors. However, the presence of both chromosomal aberrations and gene mutations in CD34+ cells from the same patients has not been explored. METHODS: Amplicon-based deep next-generation sequencing (NGS) studies were carried out in magnetically activated-cell-sorting separated CD19+ mature B lymphocytes and CD34+ hematopoietic progenitors (n = 56) to study the mutational status of TP53, NOTCH1, SF3B1, FBXW7, MYD88, and XPO1 genes. In addition, ultra-deep NGS was performed in a subset of seven patients to determine the presence of mutations in flow-sorted CD34+CD19- early hematopoietic progenitors. Fluorescence in situ hybridization (FISH) studies were performed in the CD34+ cells from nine patients of the cohort to examine the presence of cytogenetic abnormalities. RESULTS: NGS studies revealed a total of 28 mutations in 24 CLL patients. Interestingly, 15 of them also showed the same mutations in their corresponding whole population of CD34+ progenitors. The majority of NOTCH1 (7/9) and XPO1 (4/4) mutations presented a similar mutational burden in both cell fractions; by contrast, mutations of TP53 (2/2), FBXW7 (2/2), and SF3B1 (3/4) showed lower mutational allele frequencies, or even none, in the CD34+ cells compared with the CD19+ population. Ultra-deep NGS confirmed the presence of FBXW7, MYD88, NOTCH1, and XPO1 mutations in the subpopulation of CD34+CD19- early hematopoietic progenitors (6/7). Furthermore, FISH studies showed the presence of 11q and 13q deletions (2/2 and 3/5, respectively) in CD34+ progenitors but the absence of IGH cytogenetic alterations (0/2) in the CD34+ cells. Combining all the results from NGS and FISH, a model of the appearance and expansion of genetic alterations in CLL was derived, suggesting that most of the genetic events appear on the hematopoietic progenitors, although these mutations could induce the beginning of tumoral cell expansion at different stage of B cell differentiation. CONCLUSIONS: Our study showed the presence of both gene mutations and chromosomal abnormalities in early hematopoietic progenitor cells from CLL patients.


Asunto(s)
Aberraciones Cromosómicas , Células Madre Hematopoyéticas/patología , Leucemia Linfocítica Crónica de Células B/patología , Mutación , Antígenos CD19 , Antígenos CD34 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Hibridación Fluorescente in Situ/métodos , Leucemia Linfocítica Crónica de Células B/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...