Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260522

RESUMEN

Radiation therapy is frequently used to treat cancers including soft tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to radiation therapy (RT) in transplanted tumors, but the mechanism(s) remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and two doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to RT + CpG, we performed bulk RNA-seq, single-cell RNA-seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and interferon-γ. CpG + RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG + RT, TCR clonality analysis suggests an increase in clonal T-cell dominance. Collectively, these findings demonstrate that RT + CpG significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft tissue sarcoma.

2.
Cancer Res Commun ; 3(12): 2455-2467, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982576

RESUMEN

Approximately half of patients with cancer receive radiotherapy and, as cancer survivorship increases, the low rate of radiation-associated sarcomas is rising. Pharmacologic inhibition of p53 has been proposed as an approach to ameliorate acute injury of normal tissues from genotoxic therapies, but how this might impact the risk of therapy-induced cancer and normal tissue injuries remains unclear. We utilized mice that express a doxycycline (dox)-inducible p53 short hairpin RNA to reduce Trp53 expression temporarily during irradiation. Mice were placed on a dox diet 10 days prior to receiving 30 or 40 Gy hind limb irradiation in a single fraction and then returned to normal chow. Mice were examined weekly for sarcoma development and scored for radiation-induced normal tissue injuries. Radiation-induced sarcomas were subjected to RNA sequencing. Following single high-dose irradiation, 21% of animals with temporary p53 knockdown during irradiation developed a sarcoma in the radiation field compared with 2% of control animals. Following high-dose irradiation, p53 knockdown preserves muscle stem cells, and increases sarcoma development. Mice with severe acute radiation-induced injuries exhibit an increased risk of developing late persistent wounds, which were associated with sarcomagenesis. RNA sequencing revealed radiation-induced sarcomas upregulate genes related to translation, epithelial-mesenchymal transition (EMT), inflammation, and the cell cycle. Comparison of the transcriptomes of human and mouse sarcomas that arose in irradiated tissues revealed regulation of common gene programs, including elevated EMT pathway gene expression. These results suggest that blocking p53 during radiotherapy could minimize acute toxicity while exacerbating late effects including second cancers. SIGNIFICANCE: Strategies to prevent or mitigate acute radiation toxicities include pharmacologic inhibition of p53 and other cell death pathways. Our data show that temporarily reducing p53 during irradiation increases late effects including sarcomagenesis.


Asunto(s)
Traumatismos por Radiación , Sarcoma , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Sarcoma/genética , Ciclo Celular , Daño del ADN
3.
BMC Bioinformatics ; 24(1): 344, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715141

RESUMEN

BACKGROUND: Understanding the Mechanism of Action (MoA) of a compound is an often challenging but equally crucial aspect of drug discovery that can help improve both its efficacy and safety. Computational methods to aid MoA elucidation usually either aim to predict direct drug targets, or attempt to understand modulated downstream pathways or signalling proteins. Such methods usually require extensive coding experience and results are often optimised for further computational processing, making them difficult for wet-lab scientists to perform, interpret and draw hypotheses from. RESULTS: To address this issue, we in this work present MAVEN (Mechanism of Action Visualisation and Enrichment), an R/Shiny app which allows for GUI-based prediction of drug targets based on chemical structure, combined with causal reasoning based on causal protein-protein interactions and transcriptomic perturbation signatures. The app computes a systems-level view of the mechanism of action of the input compound. This is visualised as a sub-network linking predicted or known targets to modulated transcription factors via inferred signalling proteins. The tool includes a selection of MSigDB gene set collections to perform pathway enrichment on the resulting network, and also allows for custom gene sets to be uploaded by the researcher. MAVEN is hence a user-friendly, flexible tool for researchers without extensive bioinformatics or cheminformatics knowledge to generate interpretable hypotheses of compound Mechanism of Action. CONCLUSIONS: MAVEN is available as a fully open-source tool at https://github.com/laylagerami/MAVEN with options to install in a Docker or Singularity container. Full documentation, including a tutorial on example data, is available at https://laylagerami.github.io/MAVEN .


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Biología Computacional , Documentación , Sistemas de Liberación de Medicamentos
4.
Bioinformatics ; 38(7): 2075-2076, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134857

RESUMEN

MOTIVATION: Omics data are broadly used to get a snapshot of the molecular status of cells. In particular, changes in omics can be used to estimate the activity of pathways, transcription factors and kinases based on known regulated targets, that we call footprints. Then the molecular paths driving these activities can be estimated using causal reasoning on large signalling networks. RESULTS: We have developed FUNKI, a FUNctional toolKIt for footprint analysis. It provides a user-friendly interface for an easy and fast analysis of transcriptomics, phosphoproteomics and metabolomics data, either from bulk or single-cell experiments. FUNKI also features different options to visualize the results and run post-analyses, and is mirrored as a scripted version in R. AVAILABILITY AND IMPLEMENTATION: FUNKI is a free and open-source application built on R and Shiny, available at https://github.com/saezlab/ShinyFUNKI and https://saezlab.shinyapps.io/funki/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Transcriptoma , Interpretación Estadística de Datos
5.
Sci Rep ; 11(1): 11122, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045495

RESUMEN

In eukaryotes the entry into mitosis is initiated by activation of cyclin-dependent kinases (CDKs), which in turn activate a large number of protein kinases to induce all mitotic processes. The general view is that kinases are active in mitosis and phosphatases turn them off in interphase. Kinases activate each other by cross- and self-phosphorylation, while phosphatases remove these phosphate groups to inactivate kinases. Crucial exceptions to this general rule are the interphase kinase Wee1 and the mitotic phosphatase Cdc25. Together they directly control CDK in an opposite way of the general rule of mitotic phosphorylation and interphase dephosphorylation. Here we investigate why this opposite system emerged and got fixed in almost all eukaryotes. Our results show that this reversed action of a kinase-phosphatase pair, Wee1 and Cdc25, on CDK is particularly suited to establish a stable G2 phase and to add checkpoints to the cell cycle. We show that all these regulators appeared together in LECA (Last Eukaryote Common Ancestor) and co-evolved in eukaryotes, suggesting that this twist in kinase-phosphatase regulation was a crucial step happening at the emergence of eukaryotes.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Eucariontes/metabolismo , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Evolución Molecular , Humanos , Mitosis/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación
6.
Nat Comput ; 17(4): 761-779, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524215

RESUMEN

The complex dynamics of biological systems is primarily driven by molecular interactions that underpin the regulatory networks of cells. These networks typically contain positive and negative feedback loops, which are responsible for switch-like and oscillatory dynamics, respectively. Many computing systems rely on switches and clocks as computational modules. While the combination of such modules in biological systems leads to a variety of dynamical behaviours, it is also driving development of new computing algorithms. Here we present a historical perspective on computation by biological systems, with a focus on switches and clocks, and discuss parallels between biology and computing. We also outline our vision for the future of biological computing.

7.
Methods Mol Biol ; 1819: 297-316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30421410

RESUMEN

The cell cycle is one of the best understood cellular processes in biology. Many of the key interactions occurring throughout the cell cycle have already been identified. This feature makes the system ideally suited for modelers who can use all the available interaction knowledge to build a systems level model of the underlying molecular regulatory network. This model can serve to identify gaps in our knowledge and to test theoretical assumptions or constrain the space of possible solutions. The cell cycle is a repetitive chain of events that goes through several checkpoints. Thus, the cell cycle can be studied under the perspective of an oscillator with checkpoints built into it, or as a series of switch-like transitions that goes from one state to another, converging on a closed loop. We shall discuss that latter position and present a framework for building and analyzing differential equation models of switch-like behavior. We shall then apply and review diverse models for each of the cell cycle transitions and discuss how multiple switches are combined in the cell cycle to create fast and robust transitions.


Asunto(s)
Relojes Biológicos/fisiología , Ciclo Celular/fisiología , Modelos Biológicos
8.
BMC Syst Biol ; 12(1): 70, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914480

RESUMEN

BACKGROUND: Switch-like and oscillatory dynamical systems are widely observed in biology. We investigate the simplest biological switch that is composed of a single molecule that can be autocatalytically converted between two opposing activity forms. We test how this simple network can keep its switching behaviour under perturbations in the system. RESULTS: We show that this molecule can work as a robust bistable system, even for alterations in the reactions that drive the switching between various conformations. We propose that this single molecule system could work as a primitive biological sensor and show by steady state analysis of a mathematical model of the system that it could switch between possible states for changes in environmental signals. Particularly, we show that a single molecule phosphorylation-dephosphorylation switch could work as a nucleotide or energy sensor. We also notice that a given set of reductions in the reaction network can lead to the emergence of oscillatory behaviour. CONCLUSIONS: We propose that evolution could have converted this switch into a single molecule oscillator, which could have been used as a primitive timekeeper. We discuss how the structure of the simplest known circadian clock regulatory system, found in cyanobacteria, resembles the proposed single molecule oscillator. Besides, we speculate if such minimal systems could have existed in an RNA world.


Asunto(s)
Modelos Biológicos , Biocatálisis , Ambiente
10.
Nucleic Acids Res ; 43(W1): W117-21, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25897133

RESUMEN

Babelomics has been running for more than one decade offering a user-friendly interface for the functional analysis of gene expression and genomic data. Here we present its fifth release, which includes support for Next Generation Sequencing data including gene expression (RNA-seq), exome or genome resequencing. Babelomics has simplified its interface, being now more intuitive. Improved visualization options, such as a genome viewer as well as an interactive network viewer, have been implemented. New technical enhancements at both, client and server sides, makes the user experience faster and more dynamic. Babelomics offers user-friendly access to a full range of methods that cover: (i) primary data analysis, (ii) a variety of tests for different experimental designs and (iii) different enrichment and network analysis algorithms for the interpretation of the results of such tests in the proper functional context. In addition to the public server, local copies of Babelomics can be downloaded and installed. Babelomics is freely available at: http://www.babelomics.org.


Asunto(s)
Genómica/métodos , Programas Informáticos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Neoplasias/genética , Análisis de Secuencia de ARN
11.
Nucleic Acids Res ; 43(W1): W270-5, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25883139

RESUMEN

Modern sequencing technologies produce increasingly detailed data on genomic variation. However, conventional methods for relating either individual variants or mutated genes to phenotypes present known limitations given the complex, multigenic nature of many diseases or traits. Here we present PATHiVar, a web-based tool that integrates genomic variation data with gene expression tissue information. PATHiVar constitutes a new generation of genomic data analysis methods that allow studying variants found in next generation sequencing experiment in the context of signaling pathways. Simple Boolean models of pathways provide detailed descriptions of the impact of mutations in cell functionality so as, recurrences in functionality failures can easily be related to diseases, even if they are produced by mutations in different genes. Patterns of changes in signal transmission circuits, often unpredictable from individual genes mutated, correspond to patterns of affected functionalities that can be related to complex traits such as disease progression, drug response, etc. PATHiVar is available at: http://pathivar.babelomics.org.


Asunto(s)
Mutación , Transducción de Señal/genética , Programas Informáticos , Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...