Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 92(2): e0031823, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38189339

RESUMEN

Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.


Asunto(s)
Enterocolitis , Microbiota , Salmonelosis Animal , Ratones , Animales , Salmonella typhimurium , Serogrupo , Bacterias , Inflamación , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Salmonelosis Animal/microbiología
2.
Cell Host Microbe ; 31(6): 1007-1020.e4, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37279755

RESUMEN

Bacteria can evolve to withstand a wide range of antibiotics (ABs) by using various resistance mechanisms. How ABs affect the ecology of the gut microbiome is still poorly understood. We investigated strain-specific responses and evolution during repeated AB perturbations by three clinically relevant ABs, using gnotobiotic mice colonized with a synthetic bacterial community (oligo-mouse-microbiota). Over 80 days, we observed resilience effects at the strain and community levels, and we found that they were correlated with modulations of the estimated growth rate and levels of prophage induction as determined from metagenomics data. Moreover, we tracked mutational changes in the bacterial populations, and this uncovered clonal expansion and contraction of haplotypes and selection of putative AB resistance-conferring SNPs. We functionally verified these mutations via reisolation of clones with increased minimum inhibitory concentration (MIC) of ciprofloxacin and tetracycline from evolved communities. This demonstrates that host-associated microbial communities employ various mechanisms to respond to selective pressures that maintain community stability.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Bacterias/genética , Vida Libre de Gérmenes
3.
Cell Host Microbe ; 29(11): 1680-1692.e7, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610296

RESUMEN

The composition of intrinsic microbial communities determines if invading pathogens will find a suitable niche for colonization and cause infection or be eliminated. Here, we investigate how commensal E. coli mediate colonization resistance (CR) against Salmonella Typhimurium (S. Tm). Using synthetic bacterial communities, we show that the capacity of E. coli Mt1B1 to block S. Tm colonization depends on the microbial context. In an infection-permissive context, E. coli utilized a high diversity of carbon sources and was unable to block S. Tm invasion. In mice that were stably colonized by twelve phylogenetically diverse murine gut bacteria (OMM12), establishing a protective context, E. coli depleted galactitol, a substrate otherwise fueling S. Tm colonization. Here, Lachnospiraceae, capable of consuming C5 and C6 sugars, critically contributed to CR. We propose that E. coli provides CR by depleting a limited carbon source when in a microbial community adept at removing simple sugars from the intestine.


Asunto(s)
Microbiota , Salmonella typhimurium , Animales , Carbono , Escherichia coli , Galactitol , Ratones , Salmonella typhimurium/genética
4.
Med Microbiol Immunol ; 210(4): 173-179, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34021796

RESUMEN

Trillions of bacteria inhabit the mammalian gastrointestinal tract. In the majority of hosts, these symbionts contribute largely to beneficial functions promoting microbe-host homeostasis. However, an increasing number of human diseases is associated with altered microbiota composition and enrichment of certain bacterial species. A well-known example of this is Mucispirillum schaedleri, which has been associated with inflammatory conditions in the intestine. Mucispirillum spp. belong to the phylum Deferribacteres and are prevalent but low abundant members of the rodent, pig and human microbiota. Recently, M. schaedleri was causally linked to the development of Crohn's disease-like colitis in immunodeficient mice. While this study certifies a considerable pathogenic potential, the same organism can also promote health in the immunocompetent host: M. schaedleri protects from Salmonella enterica serovar Typhimurium (S. Tm)-induced colitis by interfering with the expression of the pathogen´s invasion machinery. In this review, we summarize the current knowledge on the mammalian gut symbiont M. schaedleri and its role in intestinal homeostasis and discuss open questions and perspectives for future research.


Asunto(s)
Bacterias , Enfermedad de Crohn/microbiología , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/microbiología , Infecciones por Salmonella/prevención & control , Simbiosis , Animales , Infecciones Bacterianas/microbiología , Homeostasis , Interacciones Microbiota-Huesped , Humanos , Mucosa Intestinal/microbiología , Ratones , Interacciones Microbianas , Infecciones por Salmonella/microbiología , Salmonella typhimurium/crecimiento & desarrollo
5.
Cell Host Microbe ; 25(5): 681-694.e8, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31006637

RESUMEN

The microbiota and the gastrointestinal mucus layer play a pivotal role in protection against non-typhoidal Salmonella enterica serovar Typhimurium (S. Tm) colitis. Here, we analyzed the course of Salmonella colitis in mice lacking a functional mucus layer in the gut. Unexpectedly, in contrast to mucus-proficient littermates, genetically deficient mice were protected against Salmonella-induced gut inflammation in the streptomycin colitis model. This correlated with microbiota alterations and enrichment of the bacterial phylum Deferribacteres. Using gnotobiotic mice associated with defined bacterial consortia, we causally linked Mucispirillum schaedleri, currently the sole known representative of Deferribacteres present in the mammalian microbiota, to host protection against S. Tm colitis. Inhibition by M. schaedleri involves interference with S. Tm invasion gene expression, partly by competing for anaerobic electron acceptors. In conclusion, this study establishes M. schaedleri, a core member of the murine gut microbiota, as a key antagonist of S. Tm virulence in the gut.


Asunto(s)
Antibiosis , Bacterias Anaerobias/crecimiento & desarrollo , Colitis/prevención & control , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/crecimiento & desarrollo , Animales , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Ratones
6.
mSystems ; 2(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28168224

RESUMEN

Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.

7.
Nat Microbiol ; 2: 16215, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869789

RESUMEN

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM12), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM12. By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe-microbe and microbe-host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.


Asunto(s)
Antibiosis , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Salmonelosis Animal/prevención & control , Salmonella typhimurium/fisiología , Animales , Ratones
8.
Genes Dev ; 28(11): 1165-78, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24888588

RESUMEN

MZB1 (pERp1) is a B-cell-specific and endoplasmic reticulum (ER)-localized protein implicated in antibody secretion and integrin-mediated cell adhesion. Here, we examine the role of MZB1 in vivo by conditional gene inactivation in the mouse germline and at different stages of B lymphopoiesis. Deletion of MZB1 impairs humoral immune responses and antibody secretion in plasma cells that naturally undergo ER stress. In addition, we found that experimental induction of ER stress by tunicamycin injections in mice results in a block of pro-B-cell to pre-B-cell differentiation specifically in Mzb1(-/-) mice. A similar developmental block was observed in Mzb1(fl/fl)mb1(Cre) mice, whereby a Cre recombinase-induced genotoxic stress unmasks a role for MZB1 in the surface expression of immunoglobulin µ heavy chains (µHCs). MZB1 associates directly with the substrate-specific chaperone GRP94 (also called HSP90B1 or gp96) in an ATP-sensitive manner and is required for the interaction of GRP94 with µHCs upon ER stress. Thus, MZB1 seems to act as a substrate-specific cochaperone of GRP94 that enables proper biosynthesis of µHCs under conditions of ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Chaperonas Moleculares/metabolismo , Animales , Linfocitos B/metabolismo , Técnicas de Inactivación de Genes , Inmunidad Humoral/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas mu de Inmunoglobulina/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...