RESUMEN
A Compton X-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered "flying spot" X-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered X-rays, reduced X-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided X-ray dosimetry data verifying a very low X-ray dose (~50 mrem) delivered by this imaging device. Validation experiments with mechanical models show that surface displacement at typical heart beat frequencies can be measured to the nearest 0.1 mm (SD).
RESUMEN
A new device is presented for evaluating the patency of coronary bypass grafts. Bypass grafts are located within the chest cavity using a Compton backscatter imaging (CBI) technique that creates frontal plane tomographic images. The tomographic image pixels are mapped into computer memory and displayed. A display pointer is used to mark the position of the bypass graft. The computer uses that information to subsequently position a radiation detector, such that it "looks" at the location of the bypass graft within the closed chest. The patency of the graft is then evaluated by monitoring an X-ray induced iodine fluorescence transient in the graft, subsequent to a peripheral intravenous contrast injection. This imaging and graft evaluation device is relatively inexpensive and its application does not require cutdowns or catheterization. The associated radiation dose is 1/10 to 1/50 of that associated with alternative X-ray graft patency evaluation techniques. Preliminary testing has been performed on mechanical and animal models.