Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2377, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149716

RESUMEN

Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectroscopy without significantly compromising spectral resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane-an important greenhouse gas and breath biomarker. When combined with broadband frequency combs, the high sensitivity, spectral resolution and accuracy of our DC-CRDS technique shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.

2.
Opt Lett ; 45(24): 6583-6586, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33325845

RESUMEN

Hyperspectral imaging provides spatially resolved spectral information. Utilizing dual-frequency combs as active illumination sources, hyperspectral imaging with ultra-high spectral resolution can be implemented in a scan-free manner when a detector array is used for heterodyne detection. Here, we show that dual-comb hyperspectral imaging can be performed with an uncooled near-to-mid-infrared detector by exploiting the detector array's high frame rate, achieving 10 Hz acquisition in 30 spectral channels across 16,384 pixels. Artificial intelligence (AI) enables real-time data reduction and imaging of gas concentration based on characteristic molecular absorption signatures. Owing to the detector array's sensitivity from 1 to 5 µm wavelength, this demonstration lays the foundation for real-time versatile imaging of molecular fingerprint signatures across the infrared wavelength regime with high temporal resolution.

3.
Mol Plant ; 13(12): 1709-1732, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33007468

RESUMEN

Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis.Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Desarrollo de la Planta , Inmunidad de la Planta , Proteoma/metabolismo , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Oxilipinas/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Nat Commun ; 11(1): 4164, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820155

RESUMEN

Photo-acoustic spectroscopy (PAS) is one of the most sensitive non-destructive analysis techniques for gases, fluids and solids. It can operate background-free at any wavelength and is applicable to microscopic and even non-transparent samples. Extension of PAS to broadband wavelength coverage is a powerful tool, though challenging to implement without sacrifice of wavelength resolution and acquisition speed. Here we show that dual-frequency comb spectroscopy (DCS) and its potential for unmatched precision, speed and wavelength coverage can be combined with the advantages of photo-acoustic detection. Acoustic wave interferograms are generated in the sample by dual-comb absorption and detected by a microphone. As an example, weak gas absorption features are precisely and rapidly sampled; long-term coherent averaging further increases the sensitivity. This novel approach of dual-frequency comb photo-acoustic spectroscopy (DCPAS) generates unprecedented opportunities for rapid and sensitive multi-species molecular analysis across all wavelengths of light.

5.
Nat Commun ; 11(1): 2402, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409631

RESUMEN

Optical soliton molecules are bound states of solitons that arise from the balance between attractive and repulsive effects. Having been observed in systems ranging from optical fibres to mode-locked lasers, they provide insights into the fundamental interactions between solitons and the underlying dynamics of the nonlinear systems. Here, we enter the multistability regime of a Kerr microresonator to generate superpositions of distinct soliton states that are pumped at the same optical resonance, and report the discovery of heteronuclear dissipative Kerr soliton molecules. Ultrafast electrooptical sampling reveals the tightly short-range bound nature of such soliton molecules, despite comprising cavity solitons of dissimilar amplitudes, durations and carrier frequencies. Besides the significance they hold in resolving soliton dynamics in complex nonlinear systems, such heteronuclear soliton molecules yield coherent frequency combs whose unusual mode structure may find applications in metrology and spectroscopy.

6.
Opt Lett ; 44(21): 5290-5293, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674990

RESUMEN

A broadband visible (VIS) blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum-frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser (CW), are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared (NIR) supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum-frequency transfer of the NIR supercontinuum into the VIS wavelength range covering more than 250 THz from below 400 to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the VIS wavelength band and can find application in astronomical spectrograph calibration, as well as referencing of CW lasers.

7.
Opt Lett ; 44(18): 4447-4450, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31517903

RESUMEN

Temporal dissipative Kerr solitons (DKSs) in microresonators provide ultra-short optical pulses and low-noise frequency combs with gigahertz to terahertz repetition rates. Owing to their unique properties, they have found application in fields, including optical communications, rapid laser ranging, and optical precision spectroscopy. However, due to the thermal instability encountered when entering the DKS regime, the stable generation of solitons remains challenging for many systems and usually requires rapid actuation of the pump laser detuning, pulsed driving, additional lasers, a particular mode structure and/or active feedback loops to stabilize the system. Here we show that slow pump modulation can remove the thermal instability and enable passively stable soliton states that can be readily accessed via arbitrarily slow laser tuning, thereby greatly reducing the technical complexity of stable DKS generation.

8.
Opt Lett ; 43(23): 5745-5748, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499983

RESUMEN

Optical frequency combs are key to optical precision measurements. While most frequency combs operate in the near-infrared (NIR) regime, many applications require combs at mid-infrared (MIR), visible (VIS), or even ultra-violet (UV) wavelengths. Frequency combs can be transferred to other wavelengths via nonlinear optical processes; however, this becomes exceedingly challenging for high-repetition-rate frequency combs. Here it is demonstrated that a synchronously driven high-Q microresonator with a second-order optical nonlinearity can efficiently convert high-repetition-rate NIR frequency combs to VIS, UV, and MIR wavelengths, providing new opportunities for microresonator and electro-optic combs in applications including molecular sensing, astronomy, and quantum optics.

9.
Nat Photonics ; 8(5): 375-380, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24860615

RESUMEN

Optical frequency combs have the potential to revolutionize terabit communications1. Generation of Kerr combs in nonlinear microresonators2 represents a particularly promising option3 enabling line spacings of tens of GHz. However, such combs may exhibit strong phase noise4-6, which has made high-speed data transmission impossible up to now. Here we demonstrate that systematic adjustment of pump conditions for low phase noise4,7-9 enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit/s on a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment demonstrates feedback-stabilization of the comb and transmission of a 1.44 Tbit/s data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive solution towards chip-scale terabit/s transceivers.

10.
Opt Express ; 20(25): 27661-9, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23262714

RESUMEN

We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.


Asunto(s)
Modelos Teóricos , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Compuestos de Silicona/química , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Diseño de Equipo , Análisis de Elementos Finitos , Hafnio/química , Láseres de Semiconductores , Microscopía Electrónica de Rastreo , Microtecnología/instrumentación , Microtecnología/métodos , Dinámicas no Lineales , Óxidos/química , Dióxido de Silicio/química
11.
Phys Rev Lett ; 99(16): 163002, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17995247

RESUMEN

We demonstrate quantum control of a large spin angular momentum associated with the F=3 hyperfine ground state of 133Cs. Time-dependent magnetic fields and a static tensor light shift are used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states and may lead to the improvement of some precision measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...