Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
2.
Front Cell Dev Biol ; 10: 992253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704199

RESUMEN

The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the Drosophila melanogaster male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful in vivo system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.

3.
Life Sci Alliance ; 4(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33526430

RESUMEN

Cell to cell communication facilitates tissue development and physiology. Under pathological conditions, brain tumors disrupt glia-neuron communication signals that in consequence, promote tumor expansion at the expense of surrounding healthy tissue. The glioblastoma is one of the most aggressive and frequent primary brain tumors. This type of glioma expands and infiltrates into the brain, causing neuronal degeneration and neurological decay, among other symptoms. Here, we describe in a Drosophila model how glioblastoma cells produce ImpL2, an antagonist of the insulin pathway, which targets neighboring neurons and causes mitochondrial disruption as well as synapse loss, both early symptoms of neurodegeneration. Furthermore, glioblastoma progression requires insulin pathway attenuation in neurons. Restoration of neuronal insulin activity is sufficient to rescue synapse loss and to delay the premature death caused by glioma. Therefore, signals from glioblastoma to neuron emerge as a potential field of study to prevent neurodegeneration and to develop anti-tumoral strategies.


Asunto(s)
Glioblastoma/metabolismo , Insulina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Glioblastoma/fisiopatología , Glioma/metabolismo , Glioma/fisiopatología , Insulina/fisiología , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Neuroglía/metabolismo , Neuronas/metabolismo , Transducción de Señal
4.
G3 (Bethesda) ; 10(9): 2999-3008, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737065

RESUMEN

Genetic approaches in Drosophila have successfully identified many genes involved in regulation of growth control as well as genetic interactions relevant to the initiation and progression of cancer in vivo Here, we report on large-scale RNAi-based screens to identify potential tumor suppressor genes that interact with known cancer-drivers: the Epidermal Growth Factor Receptor and the Hippo pathway transcriptional cofactor Yorkie. These screens were designed to identify genes whose depletion drove tissue expressing EGFR or Yki from a state of benign overgrowth into neoplastic transformation in vivo We also report on an independent screen aimed to identify genes whose depletion suppressed formation of neoplastic tumors in an existing EGFR-dependent neoplasia model. Many of the positives identified here are known to be functional in growth control pathways. We also find a number of novel connections to Yki and EGFR driven tissue growth, mostly unique to one of the two. Thus, resources provided here would be useful to all researchers who study negative regulators of growth during development and cancer in the context of activated EGFR and/or Yki and positive regulators of growth in the context of activated EGFR. Resources reported here are available freely for anyone to use.


Asunto(s)
Proteínas de Drosophila , Neoplasias , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes Supresores de Tumor , Neoplasias/genética , Proteínas Nucleares/genética , Transducción de Señal , Transactivadores/metabolismo
5.
Open Biol ; 10(6): 200060, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32485126

RESUMEN

Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster, as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.


Asunto(s)
Drosophila melanogaster/genética , Inestabilidad Genómica , Neoplasias/genética , Animales , Progresión de la Enfermedad , Humanos , Modelos Animales , Investigación Biomédica Traslacional
6.
Semin Cancer Biol ; 63: 27-35, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31128299

RESUMEN

Cancer is a multistep process. In the early phases of this disease, mutations in oncogenes and tumor suppressors are thought to promote clonal expansion. These mutations can increase cell competitiveness, allowing tumor cells to grow within the tissue by eliminating wild type host cells. Recent studies have shown that cell competition can also function in later phases of cancer. Here, we examine the existing evidence linking cell competition and tumorigenesis. We focus on the mechanisms underlying cell competition and their contribution to disease pathogenesis.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias/patología , Animales , Comunicación Celular/fisiología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/etiología , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes
7.
Adv Exp Med Biol ; 1167: 157-173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31520354

RESUMEN

MiRNAs are post-transcriptional regulators of gene expression which have been implicated in virtually all biological processes. MiRNAs are frequently dysregulated in human cancers. However, the functional consequences of aberrant miRNA levels are not well understood. Drosophila is emerging as an important in vivo tumor model, especially in the identification of novel cancer genes. Here, we review Drosophila studies which functionally dissect the roles of miRNAs in tumorigenesis. Ultimately, these advances help to understand the implications of miRNA dysregulation in human cancers.


Asunto(s)
Drosophila , MicroARNs/genética , Neoplasias/genética , Animales , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Oncogenes
8.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31331981

RESUMEN

One of the fundamental issues in biology is understanding how organ size is controlled. Tissue growth has to be carefully regulated to generate well-functioning organs, and defects in growth control can result in tumor formation. The Hippo signaling pathway is a universal growth regulator and has been implicated in cancer. In Drosophila, the Hippo pathway acts through the miRNA bantam to regulate cell proliferation and apoptosis. Even though the bantam targets regulating apoptosis have been determined, the target genes controlling proliferation have not been identified thus far. In this study, we identify the gene tribbles as a direct bantam target gene. Tribbles limits cell proliferation by suppressing G2/M transition. We show that tribbles regulation by bantam is central in controlling tissue growth and tumorigenesis. We expand our study to other cell cycle regulators and show that deregulated G2/M transition can collaborate with oncogene activation driving tumor formation.


Asunto(s)
Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Apoptosis , Proliferación Celular , Regulación hacia Abajo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/crecimiento & desarrollo , Tamaño de los Órganos , Transducción de Señal , Alas de Animales/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 116(28): 14055-14064, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235567

RESUMEN

Wnt/Wingless (Wg) signaling controls many aspects of animal development and is deregulated in different human cancers. The transcription factor dTcf/Pangolin (Pan) is the final effector of the Wg pathway in Drosophila and has a dual role in regulating the expression of Wg target genes. In the presence of Wg, dTcf/Pan interacts with ß-catenin/Armadillo (Arm) and induces the transcription of Wg targets. In absence of Wg, dTcf/Pan partners with the transcriptional corepressor TLE/Groucho (Gro) and inhibits gene expression. Here, we use the wing imaginal disk of Drosophila as a model to examine the functions that dTcf/Pan plays in a proliferating epithelium. We report a function of dTcf/Pan in growth control and tumorigenesis. Our results show that dTcf/Pan can limit tissue growth in normal development and suppresses tumorigenesis in the context of oncogene up-regulation. We identify the conserved transcription factors Sox box protein 15 (Sox15) and Ftz transcription factor 1 (Ftz-f1) as genes controlled by dTcf/Pan involved in tumor development. In conclusion, this study reports a role for dTcf/Pan as a repressor of normal and oncogenic growth and identifies the genes inducing tumorigenesis downstream of dTcf/Pan.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Proteínas Represoras/genética , Factores de Transcripción SOX/genética , Factores de Transcripción/genética , Animales , Proteínas del Dominio Armadillo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Epitelio/crecimiento & desarrollo , Epitelio/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Transducción de Señal/genética , Proteína Wnt1/genética
10.
Curr Biol ; 28(20): 3220-3228.e6, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30293715

RESUMEN

Cancers develop in a complex mutational landscape. Genetic models of tumor formation have been used to explore how combinations of mutations cooperate to promote tumor formation in vivo. Here, we identify lactate dehydrogenase (LDH), a key enzyme in Warburg effect metabolism, as a cooperating factor that is both necessary and sufficient for epidermal growth factor receptor (EGFR)-driven epithelial neoplasia and metastasis in a Drosophila model. LDH is upregulated during the transition from hyperplasia to neoplasia, and neoplasia is prevented by LDH depletion. Elevated LDH is sufficient to drive this transition. Notably, genetic alterations that increase glucose flux, or a high-sugar diet, are also sufficient to promote EGFR-driven neoplasia, and this depends on LDH activity. We provide evidence that increased LDHA expression promotes a transformed phenotype in a human primary breast cell culture model. Furthermore, analysis of publically available cancer data showed evidence of synergy between elevated EGFR and LDHA activity linked to poor clinical outcome in a number of human cancers. Altered metabolism has generally been assumed to be an enabling feature that accelerates cancer cell proliferation. Our findings provide evidence that sugar metabolism may have a more profound role in driving neoplasia than previously appreciated.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Hidroliasas/metabolismo , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/fisiopatología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Receptores de Péptidos de Invertebrados/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos
11.
Development ; 145(13)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29945869

RESUMEN

Tissue growth has to be carefully controlled to generate well-functioning organs. MicroRNAs are small non-coding RNAs that modulate the activity of target genes and play a pivotal role in animal development. Understanding the functions of microRNAs in development requires the identification of their target genes. Here, we find that miR-8, a conserved microRNA in the miR-200 family, controls tissue growth and homeostasis in the Drosophila wing imaginal disc. Upregulation of miR-8 causes the repression of Yorkie, the effector of the Hippo pathway in Drosophila, and reduces tissue size. Remarkably, co-expression of Yorkie and miR-8 causes the formation of neoplastic tumors. We show that upregulation of miR-8 represses the growth inhibitor brinker, and depletion of brinker cooperates with Yorkie in the formation of neoplastic tumors. Hence, miR-8 modulates a positive growth regulator, Yorkie, and a negative growth regulator, brinker Deregulation of this network can result in the loss of tissue homeostasis and the formation of tumors.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , MicroARNs/biosíntesis , Proteínas Nucleares/biosíntesis , Proteínas Oncogénicas/biosíntesis , Proteínas Represoras/biosíntesis , Transactivadores/biosíntesis , Animales , Drosophila , Proteínas de Drosophila/genética , Neoplasias Hematológicas/embriología , Neoplasias Hematológicas/genética , MicroARNs/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteínas Represoras/genética , Transactivadores/genética , Proteínas Señalizadoras YAP
12.
Cell Rep ; 23(5): 1491-1503, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29719260

RESUMEN

Cytokinesis failure may result in the formation of polyploid cells, and subsequent mitosis can lead to aneuploidy and tumor formation. Tumor suppressor mechanisms limiting the oncogenic potential of these cells have been described. However, the universal applicability of these tumor-suppressive barriers remains controversial. Here, we use Drosophila epithelial cells to investigate the consequences of cytokinesis failure in vivo. We report that cleavage defects trigger the activation of the JNK pathway, leading to downregulation of the inhibitor of apoptosis DIAP1 and programmed cell death. Yorkie overcomes the tumor-suppressive role of JNK and induces neoplasia. Yorkie regulates the cell cycle phosphatase Cdc25/string, which drives tumorigenesis in a context of cytokinesis failure. These results highlight the functional significance of the JNK pathway in epithelial cells with defective cytokinesis and elucidate a mechanism used by emerging tumor cells to bypass this tumor-suppressive barrier and develop into tumors.


Asunto(s)
Carcinogénesis/metabolismo , Citocinesis , MAP Quinasa Quinasa 4/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , MAP Quinasa Quinasa 4/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
13.
Dis Model Mech ; 10(10): 1201-1209, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754838

RESUMEN

Switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are mutated in many human cancers. In this article, we make use of a Drosophila genetic model for epithelial tumor formation to explore the tumor suppressive role of SWI/SNF complex proteins. Members of the BAP complex exhibit tumor suppressor activity in tissue overexpressing the Yorkie (Yki) proto-oncogene, but not in tissue overexpressing epidermal growth factor receptor (EGFR). The Brahma-associated protein (BAP) complex has been reported to serve as a Yki-binding cofactor to support Yki target expression. However, we observed that depletion of BAP leads to ectopic expression of Yki targets both autonomously and non-autonomously, suggesting additional indirect effects. We provide evidence that BAP complex depletion causes upregulation of the Wingless (Wg) and Decapentaplegic (Dpp) morphogens to promote tumor formation in cooperation with Yki.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Alas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis , Proteínas de Ciclo Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Ensamble y Desensamble de Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Proto-Oncogenes Mas , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal , Transactivadores/genética , Alas de Animales/patología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas Señalizadoras YAP
14.
J Dev Biol ; 5(4)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29615570

RESUMEN

Cellular metabolism has recently been recognized as a hallmark of cancer. Investigating the origin and effects of the reprogrammed metabolism of tumor cells, and identifying its genetic mediators, will improve our understanding of how these changes contribute to disease progression and may suggest new approaches to therapy. Drosophila melanogaster is emerging as a valuable model to study multiple aspects of tumor formation and malignant transformation. In this review, we discuss the use of Drosophila as model to study how changes in cellular metabolism, as well as metabolic disease, contribute to cancer.

15.
Curr Top Dev Biol ; 116: 181-99, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26970620

RESUMEN

Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study cooperation among genetic factors that contribute to disease progression.


Asunto(s)
Drosophila/genética , Transición Epitelial-Mesenquimal/fisiología , Discos Imaginales/patología , Neoplasias/patología , Animales , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Oncogenes
16.
Curr Biol ; 26(4): 419-27, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26853367

RESUMEN

Cell competition is a homeostatic process in which proliferating cells compete for survival. Elimination of otherwise normal healthy cells through competition is important during development and has recently been shown to contribute to maintaining tissue health during organismal aging. The mechanisms that allow for ongoing cell competition during adult life could, in principle, contribute to tumorigenesis. However, direct evidence supporting this hypothesis has been lacking. Here, we provide evidence that cell competition drives tumor formation in a Drosophila model of epithelial cancer. Cells expressing EGFR together with the conserved microRNA miR-8 acquire the properties of supercompetitors. Neoplastic transformation and metastasis depend on the ability of these cells to induce apoptosis and engulf nearby cells. miR-8 expression causes genome instability by downregulating expression of the Septin family protein Peanut. Cytokinesis failure due to downregulation of Peanut is required for tumorigenesis. This study provides evidence that the cellular mechanisms that drive cell competition during normal tissue growth can be co-opted to drive tumor formation and metastasis. Analogous mechanisms for cytokinesis failure may lead to polyploid intermediates in tumorigenesis in mammalian cancer models.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Drosophila melanogaster/crecimiento & desarrollo , Neoplasias Glandulares y Epiteliales/etiología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Glandulares y Epiteliales/fisiopatología , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo
17.
Curr Biol ; 24(13): 1476-84, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24980505

RESUMEN

BACKGROUND: Cancers develop in a complex mutational landscape. Interaction of genetically abnormal cancer cells with normal stromal cells can modify the local microenvironment to promote disease progression for some tumor types. Genetic models of tumorigenesis provide the opportunity to explore how combinations of cancer driver mutations confer distinct properties on tumors. Previous Drosophila models of EGFR-driven cancer have focused on epithelial neoplasia. RESULTS: Here, we report a Drosophila genetic model of EGFR-driven tumorigenesis in which the neoplastic transformation depends on interaction between epithelial and mesenchymal cells. We provide evidence that the secreted proteoglycan Perlecan can act as a context-dependent oncogene cooperating with EGFR to promote tumorigenesis. Coexpression of Perlecan in the EGFR-expressing epithelial cells potentiates endogenous Wg/Wnt and Dpp/BMP signals from the epithelial cells to support expansion of a mesenchymal compartment. Wg activity is required in the epithelial compartment, whereas Dpp activity is required in the mesenchymal compartment. This genetically normal mesenchymal compartment is required to support growth and neoplastic transformation of the genetically modified epithelial population. CONCLUSIONS: We report a genetic model of tumor formation that depends on crosstalk between a genetically modified epithelial cell population and normal host mesenchymal cells. Tumorigenesis in this model co-opts a regulatory mechanism that is normally involved in controlling growth of the imaginal disc during development.


Asunto(s)
Carcinogénesis/genética , Transformación Celular Neoplásica/metabolismo , Epitelio/metabolismo , Discos Imaginales/crecimiento & desarrollo , Mesodermo/metabolismo , Modelos Biológicos , Animales , Carcinogénesis/metabolismo , Cartilla de ADN , Drosophila , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Discos Imaginales/metabolismo , Microscopía Confocal , Proteínas Nucleares/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cross-Talk/fisiología , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal/fisiología , Proteína Wnt1/metabolismo
18.
Genes Dev ; 26(14): 1602-11, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22802531

RESUMEN

MicroRNAs (miRNAs) are emerging as cooperating factors that promote the activity of oncogenes in tumor formation and disease progression. This poses the challenge of identifying the miRNA targets responsible for these interactions. In this study, we identify the growth regulatory miRNA bantam and its target, Socs36E, as cooperating factors in EGFR-driven tumorigenesis and metastasis in a Drosophila model of epithelial transformation. bantam promotes growth by limiting expression of Socs36E, which functions as a negative growth regulator. Socs36E has only a modest effect on growth on its own, but behaves as a tumor suppressor in combination with EGFR activation. The human ortholog of SOCS36E, SOCS5, behaves as a candidate tumor suppressor in cellular transformation in cooperation with EGFR/RAS pathway activation.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , MicroARNs/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , MicroARNs/genética , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de Tumor/genética , Proteínas ras/genética , Proteínas ras/metabolismo
19.
Curr Biol ; 22(8): 651-7, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22445297

RESUMEN

BACKGROUND: The epidermal growth factor receptor (EGFR) and Hippo signaling pathways control cell proliferation and apoptosis to promote tissue growth during development. Misregulation of these pathways is implicated in cancer. Our understanding of the mechanisms that integrate the activity of these pathways remains fragmentary. This study identifies bantam microRNA as a common target of these pathways and suggests a mechanistic link between them. RESULTS: The EGFR pathway acts through bantam to control tissue growth. bantam expression is regulated by the EGFR pathway, acting via repression of the transcriptional repressor Capicua. Thus EGFR signaling induces bantam expression by alleviating the effects of a repressor. bantam in turn acts in a negative feedback loop to limit Capicua expression. CONCLUSIONS: bantam appears to be a transcriptional target of both the EGFR and Hippo growth control pathways. Feedback regulation by bantam on Capicua provides a means to link signal propagation by the EGFR pathway to activity of the Hippo pathway and may play an important role in integration of these two pathways in growth control.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Proteínas HMGB/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Receptores ErbB/genética , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Larva , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Poríferos/genética , Receptores de Péptidos de Invertebrados/genética , Proteínas Represoras/genética , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
20.
Genes Dev ; 24(13): 1339-44, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20595229

RESUMEN

Biological systems are continuously challenged by an environment that is variable. Yet, a key feature of developmental and physiological processes is their remarkable stability. This review considers how microRNAs contribute to gene regulatory networks that confer robustness.


Asunto(s)
Redes Reguladoras de Genes/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Diferenciación Celular , Células Epiteliales/citología , Retroalimentación Fisiológica , Genes de Cambio/genética , Humanos , Neuronas/citología , Dominios y Motivos de Interacción de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...