Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(1): 45-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177689

RESUMEN

The conversion of natural habitats to farmland is a major cause of biodiversity loss and poses the greatest extinction risk to birds worldwide. Tropical raptors are of particular concern, being relatively slow-breeding apex predators and scavengers, whose disappearance can trigger extensive cascading effects. Many of Africa's raptors are at considerable risk from habitat conversion, prey-base depletion and persecution, driven principally by human population expansion. Here we describe multiregional trends among 42 African raptor species, 88% of which have declined over a ca. 20-40-yr period, with 69% exceeding the International Union for Conservation of Nature criteria classifying species at risk of extinction. Large raptors had experienced significantly steeper declines than smaller species, and this disparity was more pronounced on unprotected land. Declines were greater in West Africa than elsewhere, and more than twice as severe outside of protected areas (PAs) than within. Worryingly, species suffering the steepest declines had become significantly more dependent on PAs, demonstrating the importance of expanding conservation areas to cover 30% of land by 2030-a key target agreed at the UN Convention on Biological Diversity COP15. Our findings also highlight the significance of a recent African-led proposal to strengthen PA management-initiatives considered fundamental to safeguarding global biodiversity, ecosystem functioning and climate resilience.


Asunto(s)
Ecosistema , Rapaces , Animales , Humanos , Pradera , Conservación de los Recursos Naturales , Biodiversidad
2.
Insects ; 12(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34442249

RESUMEN

The peacock butterfly is abundant and widespread in Europe. It is generally believed to be univoltine (one generation per year): adults born in summer overwinter and reappear again in spring to reproduce. However, recent flight patterns in western Europe mostly show three peaks during the year: a first one in spring (overwintering butterflies), a second one in early summer (offspring of the spring generation), and a third one in autumn. It was thus far unclear whether this autumn flight peak was a second new generation or consisted of butterflies flying again in autumn after a summer rest (aestivation). The life cycle of one of Europe's most common butterflies is therefore still surprisingly inadequately understood. We used hundreds of thousands of observations and thousands of pictures submitted by naturalists from the public to the online portal observation.orgin Belgium and analyzed relations between flight patterns, condition (wear), reproductive cycles, peak abundances, and phenology to clarify the current life history. We demonstrate that peacocks have shifted towards two new generations per year in recent decades. Mass citizen science data in online portals has become increasingly important in tracking the response of biodiversity to rapid environmental changes such as climate change.

3.
J Anim Ecol ; 90(5): 1085-1095, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33496011

RESUMEN

Global climate change is driving species' distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes. Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980-2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.


Asunto(s)
Aves , Cambio Climático , Animales , Europa (Continente) , América del Norte , Dinámica Poblacional , Estaciones del Año
4.
PhytoKeys ; (85): 1-10, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033655

RESUMEN

Waarnemingen.be - Plant occurrences in Flanders and the Brussels Capital Region, Belgium is a species occurrence dataset published by Natuurpunt. The dataset contains almost 1.2 million plant occurrences of 1,222 native vascular plant species, mostly recorded by volunteers (citizen scientists), mainly since 2008. The occurrences are derived from the database http://www.waarnemingen.be, hosted by Stichting Natuurinformatie and managed by the nature conservation NGO Natuurpunt. Together with the datasets Florabank1 (Van Landuyt and Brosens 2017) and the Belgian IFBL (Instituut voor Floristiek van België en Luxemburg) Flora Checklists (Van Landuyt and Noé 2015), the dataset represents the most complete overview of indigenous plants in Flanders and the Brussels Capital Region.

5.
Zookeys ; (585): 143-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199606

RESUMEN

In this data paper, we describe two datasets derived from two sources, which collectively represent the most complete overview of butterflies in Flanders and the Brussels Capital Region (northern Belgium). The first dataset (further referred to as the INBO dataset - http://doi.org/10.15468/njgbmh) contains 761,660 records of 70 species and is compiled by the Research Institute for Nature and Forest (INBO) in cooperation with the Butterfly working group of Natuurpunt (Vlinderwerkgroep). It is derived from the database Vlinderdatabank at the INBO, which consists of (historical) collection and literature data (1830-2001), for which all butterfly specimens in institutional and available personal collections were digitized and all entomological and other relevant publications were checked for butterfly distribution data. It also contains observations and monitoring data for the period 1991-2014. The latter type were collected by a (small) butterfly monitoring network where butterflies were recorded using a standardized protocol. The second dataset (further referred to as the Natuurpunt dataset - http://doi.org/10.15468/ezfbee) contains 612,934 records of 63 species and is derived from the database http://waarnemingen.be, hosted at the nature conservation NGO Natuurpunt in collaboration with Stichting Natuurinformatie. This dataset contains butterfly observations by volunteers (citizen scientists), mainly since 2008. Together, these datasets currently contain a total of 1,374,594 records, which are georeferenced using the centroid of their respective 5 × 5 km² Universal Transverse Mercator (UTM) grid cell. Both datasets are published as open data and are available through the Global Biodiversity Information Facility (GBIF).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...