Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927819

RESUMEN

Ischemic heart disease remains a leading cause of mortality worldwide, which has promoted extensive therapeutic efforts. Stenting has emerged as the primary intervention, particularly among individuals aged 70 years and older. The geometric specifications of stents must align with various mechanical performance criteria outlined by regulatory agencies such as the Food and Drug Administration (FDA). Finite element method (FEM) analysis and computational fluid dynamics (CFD) serve as essential tools to assess the mechanical performance parameters of stents. However, the growing complexity of the numerical models presents significant challenges. Herein, we propose a method to determine the mechanical performance parameters of stents using a simplified FEM model comprising solid and shell elements. In addition, a baseline model of a stent is developed and validated with experimental data, considering parameters such as foreshortening, radial recoil, radial recoil index, and radial stiffness of stents. The results of the simplified FEM model agree well with the baseline model, decreasing up to 80% in computational time. This method can be employed to design stents with specific mechanical performance parameters that satisfy the requirements of each patient.

2.
Heliyon ; 10(7): e28482, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601514

RESUMEN

In recent years, the growth of Internet of Things devices has increased the use of sustainable energy sources. An alternative technology is offered by triboelectric nanogenerators (TENGs) that can harvest green energy and convert it into electrical energy. Herein, we assessed three different nopal powder types that were used as triboelectric layers of eco-friendly and sustainable TENGs for renewable energy harvesting from environmental vibrations and powering electronic devices. These nanogenerators were fabricated using waste and recycled materials with a compact design for easy transportation and collocation on non-homogeneous surfaces of different vibration or motion sources. In addition, these TENGs have advantages such as high output performance, stable output voltage, lightweight, low-cost materials, and a simple fabrication process. These nanogenerators use the contact-separation mode between two triboelectric layers to convert the vibration energy into electrical energy. TENG with the best output performance is based on dehydrated nopal powder, generating an output power density of 2.145 mWm-2 with a load resistance of 39.97 MΩ under 3g acceleration and 25 Hz operating frequency. The proposed TENGs have stable output voltages during 22500 operating cycles. These nanogenerators can light 116 ultra-bright blue commercial LEDs and power a digital calculator. Also, the TENGs can be used as a chess clock connected to a mobile phone app for smart motion sensing. These nanogenerators can harvest renewable vibration energy and power electronic devices, sensors, and smart motion sensing.

3.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136177

RESUMEN

We explored the potential of different nanoparticles (TiO2, CaCO3, and Al2O3), considering their pure form and modified with cinnamon essential oil (CEO). These materials were characterized using various techniques, including FTIR spectroscopy, XRD analysis, TGA, and SEM. The interaction between CEO and nanoparticles changed depending on the nanoparticle type. Al2O3 nanoparticles exhibited the strongest interaction with CEO, increasing their antioxidant capacity by around 40% and their transfer of antimicrobial properties, particularly against Gram-negative bacteria. In contrast, TiO2 and CaCO3 nanoparticles showed limited interaction with CEO, resulting in lower antioxidant capacity and antimicrobial activity. Incorporating pure and CEO-modified nanoparticles into polylactic acid (PLA) films improved their mechanical and thermal properties, which are suitable for applications requiring greater strength. This research highlights the potential of metal oxide nanoparticles to enhance the antimicrobial and antioxidant capabilities of polymers. In addition, incorporating cinnamon essential oil can increase the antioxidant and antimicrobial effectiveness of the metal oxide nanoparticles and improve the mechanical and thermal properties of PLA films. Thus, these PLA films exhibit favorable characteristics for active packaging applications.

4.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139637

RESUMEN

Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.

5.
Membranes (Basel) ; 13(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37887997

RESUMEN

Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, blood filtration and bio-medical analysis. For the filtration of water, as well as other liquids, the micro-filtration based microfluidic devices are considered as potential candidates to fulfill the desired conditions and requirements. The micro pore membrane can be designed and fabricated in such a way that it maximizes the removal of impurities from fluid. The low-cost micro-filtration method has been reported to provide clean fluid for biomedical applications and other purposes. In the work, anodic-aluminum-oxide-based membranes have been fabricated with different pore sizes ranging from 70 to 500 nm. A soft computing technique like fuzzy logic has been used to estimate the filtration parameters. Then, the finite-element-based analysis system software has been used to study the fluid flow through the double membrane. Then, filtration is performed by using a dual membrane and the clogging of the membrane has been studied after different filtration cycles using characterization like a scanning electron microscope. The filtration has been done to purify the contaminated fluid which has impurities like bacteria and protozoans. The membranes have been tested after each cycle to verify the results. The decrease in permeance with respect to the increase in the velocity of the fluid and the permeate volume per unit clearly depicts the removal of containments from the fluid after four and eight cycles of filtration. The results clearly show that the filtration efficiency can be improved by increasing the number of cycles and adding a dual membrane in the micro-fluidic device. The results show the potential of dual anodic aluminum oxide membranes for the effective filtration of fluids for biomedical applications, thereby offering a promising solution to address current challenges.

6.
Antioxidants (Basel) ; 12(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37237956

RESUMEN

One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO2) nanoparticles (NPs) (0.1% w/w) chemically modified with cinnamon essential oil (CEO). For the modification of the NPs, two methods (M1 and M2) were tested, and their effects on the chemical, mechanical, and physical properties of the polymer matrix were evaluated. The results showed that CEO conferred to SiO2 NPs had a high percentage of 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical inhibition (>70%), cell viability (>80%), and strong inhibition to E. coli, at 45 and 11 µg/mL for M1 and M2, respectively, and thermal stability. Films were prepared with these NPs, and characterizations and evaluations on apple storage were performed for 21 days. The results show that the films with pristine SiO2 improved tensile strength (28.06 MPa), as well as Young's modulus (0.368 MPa) since PLA films only presented values of 27.06 MPa and 0.324 MPa, respectively; however, films with modified NPs decreased tensile strength values (26.22 and 25.13 MPa), but increased elongation at break (from 5.05% to 10.32-8.32%). The water solubility decreased from 15% to 6-8% for the films with NPs, as well as the contact angle, from 90.21° to 73° for the M2 film. The water vapor permeability increased for the M2 film, presenting a value of 9.50 × 10-8 g Pa-1 h-1 m-2. FTIR analysis indicated that the addition of NPs with and without CEO did not modify the molecular structure of pure PLA; however, DSC analysis indicated that the crystallinity of the films was improved. The packaging prepared with M1 (without Tween 80) showed good results at the end of storage: lower values in color difference (5.59), organic acid degradation (0.042), weight loss (24.24%), and pH (4.02), making CEO-SiO2 a good component to produce active packaging.

7.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37177398

RESUMEN

Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric nanogenerator based on dehydrated nopal powder (NOP-TENG) as novel triboelectric material. In addition, this nanogenerator uses a polyimide film tape adhered to two copper-coated Bakelite plates. The NOP-TENG generates a power density of 2309.98 µW·m-2 with a load resistance of 76.89 MΩ by applying a hand force on its outer surface. Furthermore, the nanogenerator shows a power density of 556.72 µW·m-2 with a load resistance of 76.89 MΩ and under 4g acceleration at 15 Hz. The output voltage of the NOP-TENG depicts a stable output performance even after 27,000 operation cycles. This nanogenerator can light eighteen green commercial LEDs and power a digital calculator. The proposed NOP-TENG has a simple structure, easy manufacturing process, stable electric behavior, and cost-effective output performance. This portable nanogenerator may power electronic devices using different vibration energy sources.

8.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36558257

RESUMEN

The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.

9.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36234674

RESUMEN

In previous work, the isolated polyphenolic compound (PPC) quercetin was used as a reducing agent in the formation of silver nanoparticles (AgNPs), testing two types of quercetin. This PPC is a bioactive molecule that provides the electrons for the reduction of silver ions to zerovalent silver. The results demonstrated that quercetin in dietary supplement presentation was better than reagent grade quercetin for the synthesis of AgNPs, and the difference between them was that the dietary supplement had microcrystalline cellulose (CM) in its formulation. Therefore, this dietary anti-caking agent was added to the reagent-grade quercetin to validate this previously found improvement. AgNPs were obtained at neutral pH by a green route using quercetin as a reducing agent and microcrystalline cellulose and maltodextrin as stabilizing agents. In addition, different ratios were evaluated to find the optimum ratio. Ultraviolet-Visible spectroscopy (UV-VIS), Atomic Force Microscope (AFM), Z-potential, Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) were used for characterization. The antibacterial activity of the S. aureus and E. coli agent was tested by the disk diffusion and microdilution method. According to the results, this green synthesis needs the use of food stabilizer when working at pH 7 to maintain AgNPs in the long term. The ideal ratio of reducing the agent:stabilizing agent was 1:2, since with this system stable AgNPs are obtained for 2 months and with improved antimicrobial activity, validating this method was ecologically and economically viable.

10.
Nanomaterials (Basel) ; 12(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893517

RESUMEN

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants. Various systems and equipment have been utilized to gather natural energy. However, most technologies need a huge amount of infrastructure and expensive equipment in order to power electronic gadgets, smart sensors, and wearable devices. Nanogenerators have recently emerged as an alternative technique for collecting energy from both natural and artificial sources, with significant benefits such as light weight, low-cost production, simple operation, easy signal processing, and low-cost materials. These nanogenerators might power electronic components and wearable devices used in a variety of applications such as telecommunications, the medical sector, the military and automotive industries, and internet of things (IoT) devices. We describe new research on the performance of nanogenerators employing several green energy acquisition processes such as piezoelectric, electromagnetic, thermoelectric, and triboelectric. Furthermore, the materials, applications, challenges, and future prospects of several nanogenerators are discussed.

11.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055286

RESUMEN

Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young's modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young's modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.

12.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200636

RESUMEN

The smart healthcare devices connected with the internet of things (IoT) for medical services can obtain physiological data of risk patients and communicate these data in real-time to doctors and hospitals. These devices require power sources with a sufficient lifetime to supply them energy, limiting the conventional electrochemical batteries. Additionally, these batteries may contain toxic materials that damage the health of patients and environment. An alternative solution to gradually substitute these electrochemical batteries is the development of triboelectric energy harvesters (TEHs), which can convert the kinetic energy of ambient into electrical energy. Here, we present the fabrication of a TEH formed by a stainless steel substrate (25 mm × 15 mm) coated with a molybdenum disulfide (MoS2) film as top element and a polydimethylsiloxane (PDMS) film deposited on indium tin oxide coated polyethylene terephthalate substrate (PET/ITO). This TEH has a generated maximum voltage of 2.3 V and maximum output power of 112.55 µW using a load resistance of 47 kΩ and a mechanical vibration to 59.7 Hz. The proposed TEH could be used to power potential smart healthcare devices.

13.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256037

RESUMEN

Industry 4.0 and the Internet of Things have significantly increased the use of sensors and electronic products based on flexible substrates, which require electrical energy for their performance. This electrical energy can be supplied by piezoelectric vibrational energy harvesting (pVEH) devices. These devices can convert energy from ambient mechanical excitations into electrical energy. In order to develop, these devices require piezoelectric films fabricated with a simple and low-cost process. In this work, we synthesize ZnO nanorod film by a solvothermal method and deposit by spraying on ITO (indium-tin-oxide)/PET (polyethylene terephthalate) flexible substrate for a pVEH microdevice. The results of the characterization of the ZnO nanorod film using X-ray diffraction (XRD) confirm the typical reflections for this type of nanomaterial (JCPDS 36-145). Based on transmission electron microscopy (TEM) images, the size of the nanorod film is close to 1380 nm, and the average diameter is 221 ± 67 nm. In addition, the morphological characteristics of the ZnO nanorod film are obtained using atomic force microscopy (AFM) tapping images. The pVEH microdevice has a resonant frequency of 37 Hz, a generated voltage and electrical power of 9.12 V and 6.67 µW, respectively, considering a load resistance of 107.7 kΩ and acceleration of 1.5 g. The ZnO nanorod film may be applied to pVEH microdevices with flexible substrates using a low-cost and easy fabrication process.

14.
Micromachines (Basel) ; 11(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957544

RESUMEN

Piezoelectric nanogenerators can convert energy from ambient vibrations into electrical energy. In the future, these nanogenerators could substitute conventional electrochemical batteries to supply electrical energy to consumer electronics. The optimal design of nanogenerators is fundamental in order to achieve their best electromechanical behavior. We present the analytical electromechanical modeling of a vibration-based piezoelectric nanogenerator composed of a double-clamped beam with five multilayered cross-sections. This nanogenerator design has a central seismic mass (910 µm thickness) and substrate (125 µm thickness) of polyethylene terephthalate (PET) as well as a zinc oxide film (100 nm thickness) at the bottom of each end. The zinc oxide (ZnO) films have two aluminum electrodes (100 nm thickness) through which the generated electrical energy is extracted. The analytical electromechanical modeling is based on the Rayleigh method, Euler-Bernoulli beam theory and Macaulay method. In addition, finite element method (FEM) models are developed to estimate the electromechanical behavior of the nanogenerator. These FEM models consider air damping at atmospheric pressure and optimum load resistance. The analytical modeling results agree well with respect to those of FEM models. For applications under accelerations in y-direction of 2.50 m/s2 and an optimal load resistance of 32,458 Ω, the maximum output power and output power density of the nanogenerator at resonance (119.9 Hz) are 50.44 µW and 82.36 W/m3, respectively. This nanogenerator could be used to convert the ambient mechanical vibrations into electrical energy and supply low-power consumption devices.

15.
Materials (Basel) ; 12(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671868

RESUMEN

Modern concrete infrastructure requires structural components with higher mechanical strength and greater durability. A solution is the addition of nanomaterials to cement-based materials, which can enhance their mechanical properties. Some such nanomaterials include nano-silica (nano-SiO2), nano-alumina (nano-Al2O3), nano-ferric oxide (nano-Fe2O3), nano-titanium oxide (nano-TiO2), carbon nanotubes (CNTs), graphene and graphene oxide. These nanomaterials can be added to cement with other reinforcement materials such as steel fibers, glass, rice hull powder and fly ash. Optimal dosages of these materials can improve the compressive, tensile and flexural strength of cement-based materials, as well as their water absorption and workability. The use of these nanomaterials can enhance the performance and life cycle of concrete infrastructures. This review presents recent researches about the main effects on performance of cement-based composites caused by the incorporation of nanomaterials. The nanomaterials could decrease the cement porosity, generating a denser interfacial transition zone. In addition, nanomaterials reinforced cement can allow the construction of high-strength concrete structures with greater durability, which will decrease the maintenance requirements or early replacement. Also, the incorporation of nano-TiO2 and CNTs in cementitious matrices can provide concrete structures with self-cleaning and self-sensing abilities. These advantages could help in the photocatalytic decomposition of pollutants and structural health monitoring of the concrete structures. The nanomaterials have a great potential for applications in smart infrastructure based on high-strength concrete structures.

16.
Micromachines (Basel) ; 10(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917550

RESUMEN

Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 µm thickness). The multilayer beams contain flexible substrates (160 µm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 µm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 µW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.

17.
Sensors (Basel) ; 18(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347743

RESUMEN

New mobile devices need microphones with a small size, low noise level, reduced cost and high stability respect to variations of temperature and humidity. These characteristics can be obtained using Microelectromechanical Systems (MEMS) microphones, which are substituting for conventional electret condenser microphones (ECM). We present the design and modeling of a capacitive dual-backplate MEMS microphone with a novel circular diaphragm (600 µm diameter and 2.25 µm thickness) supported by fifteen polysilicon springs (2.25 µm thickness). These springs increase the effective area (86.85% of the total area), the linearity and sensitivity of the diaphragm. This design is based on the SUMMiT V fabrication process from Sandia National Laboratories. A lumped element model is obtained to predict the electrical and mechanical behavior of the microphone as a function of the diaphragm dimensions. In addition, models of the finite element method (FEM) are implemented to estimate the resonance frequencies, deflections, and stresses of the diaphragm. The results of the analytical models agree well with those of the FEM models. Applying a bias voltage of 3 V, the designed microphone has a bandwidth from 31 Hz to 27 kHz with 3 dB sensitivity variation, a sensitivity of 34.4 mV/Pa, a pull-in voltage of 6.17 V and a signal to noise ratio of 62 dBA. The results of the proposed microphone performance are suitable for mobile device applications.

18.
Sensors (Basel) ; 18(5)2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789474

RESUMEN

Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs).


Asunto(s)
Sistemas Microelectromecánicos/instrumentación , Neoplasias/sangre , Células Neoplásicas Circulantes/patología , Humanos , Electricidad Estática
19.
Micromachines (Basel) ; 8(7)2017 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30400394

RESUMEN

Endoscopic optical-coherence tomography (OCT) systems require low cost mirrors with small footprint size, out-of-plane deflections and low bias voltage. These requirements can be achieved with electrothermal actuators based on microelectromechanical systems (MEMS). We present the design and modeling of polysilicon electrothermal actuators for a MEMS mirror (100 µm × 100 µm × 2.25 µm). These actuators are composed by two beam types (2.25 µm thickness) with different cross-section area, which are separated by 2 µm gap. The mirror and actuators are designed through the Sandia Ultra-planar Multi-level MEMS Technology V (SUMMiT V®) process, obtaining a small footprint size (1028 µm × 1028 µm) for actuators of 550 µm length. The actuators have out-of-plane displacements caused by low dc voltages and without use material layers with distinct thermal expansion coefficients. The temperature behavior along the actuators is calculated through analytical models that include terms of heat energy generation, heat conduction and heat energy loss. The force method is used to predict the maximum out-of-plane displacements in the actuator tip as function of supplied voltage. Both analytical models, under steady-state conditions, employ the polysilicon resistivity as function of the temperature. The electrothermal-and structural behavior of the actuators is studied considering different beams dimensions (length and width) and dc bias voltages from 0.5 to 2.5 V. For 2.5 V, the actuator of 550 µm length reaches a maximum temperature, displacement and electrical power of 115 °C, 10.3 µm and 6.3 mW, respectively. The designed actuation mechanism can be useful for MEMS mirrors of different sizes with potential application in endoscopic OCT systems that require low power consumption.

20.
Materials (Basel) ; 9(8)2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28773740

RESUMEN

Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films' thickness values fell within the nanometer range (290-310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...