Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Causes Control ; 35(4): 661-669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010586

RESUMEN

PURPOSE: Liver cancer incidence among American Indians/Alaska Natives has risen over the past 20 years. Peripheral blood DNA methylation may be associated with liver cancer and could be used as a biomarker for cancer risk. We evaluated the association of blood DNA methylation with risk of liver cancer. METHODS: We conducted a prospective cohort study in 2324 American Indians, between age 45 and 75 years, from Arizona, Oklahoma, North Dakota and South Dakota who participated in the Strong Heart Study between 1989 and 1991. Liver cancer deaths (n = 21) were ascertained using death certificates obtained through 2017. The mean follow-up duration (SD) for non-cases was 25.1 (5.6) years and for cases, 11.0 (8.8) years. DNA methylation was assessed from blood samples collected at baseline using MethylationEPIC BeadChip 850 K arrays. We used Cox regression models adjusted for age, sex, center, body mass index, low-density lipoprotein cholesterol, smoking, alcohol consumption, and immune cell proportions to examine the associations. RESULTS: We identified 9 CpG sites associated with liver cancer. cg16057201 annotated to MRFAP1) was hypermethylated among cases vs. non-cases (hazard ratio (HR) for one standard deviation increase in methylation was 1.25 (95% CI 1.14, 1.37). The other eight CpGs were hypomethylated and the corresponding HRs (95% CI) ranged from 0.58 (0.44, 0.75) for cg04967787 (annotated to PPRC1) to 0.77 (0.67, 0.88) for cg08550308. We also assessed 7 differentially methylated CpG sites associated with liver cancer in previous studies. The adjusted HR for cg15079934 (annotated to LPS1) was 1.93 (95% CI 1.10, 3.39). CONCLUSIONS: Blood DNA methylation may be associated with liver cancer mortality and may be altered during the development of liver cancer.


Asunto(s)
Indígenas Norteamericanos , Neoplasias Hepáticas , Humanos , Persona de Mediana Edad , Anciano , Indio Americano o Nativo de Alaska , Metilación de ADN , Estudios Prospectivos , Indígenas Norteamericanos/genética , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/genética
2.
Environ Pollut ; 334: 122153, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442331

RESUMEN

Altered DNA methylation (DNAm) might be a biological intermediary in the pathway from smoking to lung cancer. In this study, we investigated the contribution of differential blood DNAm to explain the association between smoking and lung cancer incidence. Blood DNAm was measured in 2321 Strong Heart Study (SHS) participants. Incident lung cancer was assessed as time to event diagnoses. We conducted mediation analysis, including validation with DNAm and paired gene expression data from the Framingham Heart Study (FHS). In the SHS, current versus never smoking and pack-years single-mediator models showed, respectively, 29 and 21 differentially methylated positions (DMPs) for lung cancer with statistically significant mediated effects (14 of 20 available, and five of 14 available, positions, replicated, respectively, in FHS). In FHS, replicated DMPs showed gene expression downregulation largely in trans, and were related to biological pathways in cancer. The multimediator model identified that DMPs annotated to the genes AHRR and IER3 jointly explained a substantial proportion of lung cancer. Thus, the association of smoking with lung cancer was partly explained by differences in baseline blood DNAm at few relevant sites. Experimental studies are needed to confirm the biological role of identified eQTMs and to evaluate potential implications for early detection and control of lung cancer.


Asunto(s)
Metilación de ADN , Neoplasias Pulmonares , Humanos , Fumar/epidemiología , Fumar Tabaco/genética , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Secuencia de Bases , Epigénesis Genética
3.
Circ Res ; 131(2): e51-e69, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35658476

RESUMEN

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.


Asunto(s)
Arsénico , Aterosclerosis , Enfermedades Cardiovasculares , Animales , Apolipoproteínas E , Arsénico/toxicidad , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/genética , Metilación de ADN , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estudios Prospectivos
4.
JAMA Cardiol ; 6(11): 1237-1246, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347013

RESUMEN

Importance: American Indian communities experience a high burden of coronary heart disease (CHD). Strategies are needed to identify individuals at risk and implement preventive interventions. Objective: To investigate the association of blood DNA methylation (DNAm) with incident CHD using a large number of methylation sites (cytosine-phosphate-guanine [CpG]) in a single model. Design, Setting, and Participants: This prospective study, including a discovery cohort (the Strong Heart Study [SHS]) and 4 additional cohorts (the Women's Health Initiative [WHI], the Framingham Heart Study [FHS], the Atherosclerosis Risk in Communities Study ([ARIC]-Black, and ARIC-White), evaluated 12 American Indian communities in 4 US states; African American women, Hispanic women, and White women throughout the US; White men and White women from Massachusetts; and Black men and women and White men and women from 4 US communities. A total of 2321 men and women (mean [SD] follow-up, 19.1 [9.2] years) were included in the SHS, 1874 women (mean [SD] follow-up, 15.8 [5.9] years) in the WHI, 2128 men and women (mean [SD] follow-up, 7.7 [1.8] years) in the FHS, 2114 men and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-Black, and 931 men and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-White. Data were collected from May 1989 to December 2018 and analyzed from February 2019 to May 2021. Exposure: Blood DNA methylation. Main Outcome and Measure: Using a high-dimensional time-to-event elastic-net model for the association of 407 224 CpG sites with incident CHD in the SHS (749 events), this study selected the differentially methylated CpG positions (DMPs) selected in the SHS and evaluated them in the WHI (531 events), FHS (143 events), ARIC-Black (350 events), and ARIC-White (121 events) cohorts. Results: The median (IQR) age of participants in SHS was 55 (49-62) years, and 1359 participants (58.6%) were women. Elastic-net models selected 505 DMPs associated with incident CHD in the SHS beyond established risk factors, center, blood cell counts, and genetic principal components. Among those DMPs, 33 were commonly selected in 3 or 4 of the other cohorts and the pooled hazard ratios from the standard Cox models were significant at P < .05 for 10 of the DMPs. For example, the hazard ratio (95% CI) for CHD comparing the 90th and 10th percentiles of differentially methylated CpGs was 0.86 (0.78-0.95) for cg16604233 (tagged to COL11A2) and 1.23 (1.08-1.39) for cg09926486 (tagged to FRMD5). Some of the DMPs were consistent in the direction of the association; others showed associations in opposite directions across cohorts. Untargeted independent elastic-net models of CHD showed distinct DMPs, genes, and network of genes in the 5 cohorts. Conclusions and Relevance: In this multi-cohort study, blood-based DNAm findings supported an association between a complex blood epigenomic signature and CHD that was largely different across populations.


Asunto(s)
Asiático , Enfermedad Coronaria/genética , Anciano , Enfermedad Coronaria/etnología , Metilación de ADN/genética , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Análisis por Micromatrices/métodos , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Factores de Tiempo , Estados Unidos/epidemiología
5.
Clin Epigenetics ; 13(1): 43, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632303

RESUMEN

BACKGROUND: Epigenetic alterations may contribute to early detection of cancer. We evaluated the association of blood DNA methylation with lymphatic-hematopoietic cancers and, for comparison, with solid cancers. We also evaluated the predictive ability of DNA methylation for lymphatic-hematopoietic cancers. METHODS: Blood DNA methylation was measured using the Illumina Infinium methylationEPIC array in 2324 Strong Heart Study participants (41.4% men, mean age 56 years). 788,368 CpG sites were available for differential DNA methylation analysis for lymphatic-hematopoietic, solid and overall cancers using elastic-net and Cox regression models. We conducted replication in an independent population: the Framingham Heart Study. We also analyzed differential variability and conducted bioinformatic analyses to assess for potential biological mechanisms. RESULTS: Over a follow-up of up to 28 years (mean 15), we identified 41 lymphatic-hematopoietic and 394 solid cancer cases. A total of 126 CpGs for lymphatic-hematopoietic cancers, 396 for solid cancers, and 414 for overall cancers were selected as predictors by the elastic-net model. For lymphatic-hematopoietic cancers, the predictive ability (C index) increased from 0.58 to 0.87 when adding these 126 CpGs to the risk factor model in the discovery set. The association was replicated with hazard ratios in the same direction in 28 CpGs in the Framingham Heart Study. When considering the association of variability, rather than mean differences, we found 432 differentially variable regions for lymphatic-hematopoietic cancers. CONCLUSIONS: This study suggests that differential methylation and differential variability in blood DNA methylation are associated with lymphatic-hematopoietic cancer risk. DNA methylation data may contribute to early detection of lymphatic-hematopoietic cancers.


Asunto(s)
Detección Precoz del Cáncer/métodos , Neoplasias Hematológicas/genética , Sistema Linfático/patología , Neoplasias/sangre , Neoplasias/genética , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etnología , Biología Computacional/métodos , Islas de CpG , Metilación de ADN , Epigenómica , Femenino , Estudios de Seguimiento , Neoplasias Hematológicas/patología , Humanos , Incidencia , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neoplasias/epidemiología , Valor Predictivo de las Pruebas , Estudios Prospectivos , Mapas de Interacción de Proteínas/genética , Factores de Riesgo , Indio Americano o Nativo de Alaska/etnología
6.
Environ Health Perspect ; 128(6): 67005, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32484362

RESUMEN

BACKGROUND: The epigenetic effects of individual environmental toxicants in tobacco remain largely unexplored. Cadmium (Cd) has been associated with smoking-related health effects, and its concentration in tobacco smoke is higher in comparison with other metals. OBJECTIVES: We studied the association of Cd and smoking exposures with human blood DNA methylation (DNAm) profiles. We also evaluated the implication of findings to relevant methylation pathways and the potential contribution of Cd exposure from smoking to explain the association between smoking and site-specific DNAm. METHODS: We conducted an epigenome-wide association study of urine Cd and self-reported smoking (current and former vs. never, and cumulative smoking dose) with blood DNAm in 790,026 CpGs (methylation sites) measured with the Illumina Infinium Human MethylationEPIC (Illumina Inc.) platform in 2,325 adults 45-74 years of age who participated in the Strong Heart Study in 1989-1991. In a mediation analysis, we estimated the amount of change in DNAm associated with smoking that can be independently attributed to increases in urine Cd concentrations from smoking. We also conducted enrichment analyses and in silico protein-protein interaction networks to explore the biological relevance of the findings. RESULTS: At a false discovery rate (FDR)-corrected level of 0.05, we found 6 differentially methylated positions (DMPs) for Cd; 288 and 17, respectively, for current and former smoking status; and 77 for cigarette pack-years. Enrichment analyses of these DMPs displayed enrichment of 58 and 6 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene sets, respectively, including biological pathways for cancer and cardiovascular disease. In in silico protein-to-protein networks, we observed key proteins in DNAm pathways directly and indirectly connected to Cd- and smoking-DMPs. Among DMPs that were significant for both Cd and current smoking (annotated to PRSS23, AHRR, F2RL3, RARA, and 2q37.1), we found statistically significant contributions of Cd to smoking-related DNAm. CONCLUSIONS: Beyond replicating well-known smoking epigenetic signatures, we found novel DMPs related to smoking. Moreover, increases in smoking-related Cd exposure were associated with differential DNAm. Our integrative analysis supports a biological link for Cd and smoking-associated health effects, including the possibility that Cd is partly responsible for smoking toxicity through epigenetic changes. https://doi.org/10.1289/EHP6345.


Asunto(s)
Cadmio , Metilación de ADN , Exposición a Riesgos Ambientales/estadística & datos numéricos , Fumar/epidemiología , Adulto , Anciano , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...